Fomin Korablev1781
?>

Найти объем цилиндра, высота которого 16 см, а диагональ осевого сечения 20 см.

Геометрия

Ответы

Николаевич-Золотая832

V = Sh

S = r^2*пи

h = 16

По теореме Пифагора найден диаметр окружности основания

V(400 - 256) = V144 = 12

r = 6

S = 6*6пи = 36пи

Valentina
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
koxhulya61

7 см

Правильное условие:

В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AВМ = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах.

Объяснение:

Серединные перпендикуляры к сторонам треугольника  пересекаются в одной точке — центре описанной окружности.

Значит МА=МВ=МС=R = 14 см.

Тогда ΔАМВ - равнобедренный с основанием АВ  и ∠МАВ=∠МВА=30°.

Расстоянием от т.М до стороны АВ есть высота равнобедренного  ΔАМВ.

Построим высоту МК. Получили прямоугольный ΔВМК с прямым ∠МКВ и гипотенузой МВ.

Катет МК = sin∠MВK * MВ.

Т.к. ∠МВК = ∠АВМ = 30°   и МА = 14 см, то

МК = sin 30° * 14 = 7 (см)


Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти объем цилиндра, высота которого 16 см, а диагональ осевого сечения 20 см.
Ваше имя (никнейм)*
Email*
Комментарий*