карпова581
?>

Периметр треугольника CBA равен 1200 см. Вычисли стороны треугольника, если дано их соотношение AC:BA:BC=5:4:3.​

Геометрия

Ответы

Valerevna Tuzova

AC:BA:BC=5:4:3, тогда AC - 5x, BA - 4x, BC - 3x. Уравнение:

5x + 4x + 3x = 1200

12x = 1200

x = 100

AB = 5x = 500(см),

BA = 4x = 400(см),

BC = 3x = 300(см)

boyarinovigor

АС=500, ВА=400, ВС=300

Объяснение:

Пусть АС = 5х, тогда, ВА=4х, ВС=3х.

Получим 5х+4х+3х=1200

12х=1200

х=100

5х=500

4х=400

3х=300

choia

Объяснение:

Все грани прямоугольного параллелепипеда - прямоугольники.

ΔА₁АС:   ∠A₁AC = 90°

              sinβ = AA₁ / A₁C,   ⇒   AA₁ = A₁C · sinβ,

              AA₁ = a · sinβ

              cosβ = AC / A₁C,   ⇒  AC = A₁C · cosβ,

              AC = a · cosβ.

Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит

∠АCB = 1/2 ∠AOB = α/2.

ΔABC:   ∠ABC = 90°

             sin∠ACB = AB / AC,  ⇒  AB = AC · sin∠ACB,

             AB = a · cosβ · sin(α/2),

             cos∠ACB = BC / AC,  ⇒  BC = AC · cos∠ACB,

             BC = a · cosβ · cos(α/2).

Sбок = Pосн · AA₁

Sбок = (AB + BC) · 2 · AA₁

Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =

= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =

= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =

= a²sin2β (sin(α/2) + cos(α/2))

Yuliya

Площа трикутника дорівнює половині від твору його боку на висоту, проведену до цієї сторони. Сторону, до якої проведена висота, прийнято в такому випадку називати підставою. Таким чином, можна сказати, що площа трикутника дорівнює половині добутку його основи на висоту.

Якщо позначити довжину сторони-основи трикутника як a, висоту – як h, то вийде формула площі трикутника:

S = ½ ah

Щоб довести цю формулу, слід розглянути всі варіанти розташування висоти в трикутнику. Їх усього три. Це:

Висота збігається з однією з сторін трикутника. У цьому випадку ми маємо справу з прямокутним трикутником, в якому за основу взято один з катетів. Висотою ж, проведеної до цього катету, є інший катет.

Висота знаходиться всередині трикутника. У цьому випадку вона перетинається з основою і ділить його на два відрізки. При цьому даний трикутник ділиться на два прямокутних трикутника.

Висота проходить за межами трикутника. У такому випадку вона перетинається не з самим підставою, а з його продовженням (прямий, на якій лежить підстава).

Розглянемо перший випадок. Нехай дано трикутник ABC. У ньому до основи AC довжиною a проведена висота h, яка співпала зі стороною BC:

Площа прямокутного трикутника

Як відомо площа прямокутника дорівнює добутку його суміжних сторін. Якби у нас був прямокутник зі сторонами, довжини яких a і h, то його площа дорівнювала б ah. Якщо в прямокутнику провести діагональ, то вона розбиває його на два рівних прямокутних трикутника (у них відповідно рівні всі три сторони). Площі цих трикутників також рівні між собою і кожна становить ½ від площі всього прямокутника. Таким чином доведено, що площа трикутника в даному випадку буде дорівнює ½ah.

Розглянемо другий випадок. Нехай у ньому висота BH довжиною h перетинає сторону AC довжиною a.

Площа трикутника по підставі і висоті

У цьому випадку ми отримуємо два прямокутних трикутника: ABH і CBH. З розглянутого першого випадку ми знаємо, що їх площі рівні відповідно ½ · AH · h і ½ · CH · h.

Площа ж усього трикутника ABC являє собою суму цих двох площ:

S = ½ · AH · h + ½ · CH · h

Винесемо за дужки спільні множники:

S = ½ · h · (AH + CH)

Але ж AH і CH в сумі складають довжину a. Таким чином, приходимо до формули, яку потрібно було довести:

S = ½ · h · a

Тепер розглянемо третій випадок, коли висота знаходиться за межами трикутника:

Площа трикутника по підставі і висоті

Тут ми теж можемо побачити два прямокутних трикутника. Це ΔABH і ΔCBH. Причому перший включає в себе другий. Шуканий самий трикутник ABC є доповненням до трикутника CBH до трикутника ABH. Таким чином ми можемо записати, що площа ΔABH дорівнює сумі площ ΔCBH і ΔABC:

SΔABH = SΔCBH + SΔABC

Звідки знаходимо площа шуканого трикутника ABC:

SΔABC = SΔABH – SΔCBH

Площа трикутника ABH дорівнює ½ · AH · h, площа трикутника CBH дорівнює ½ · CH · h:

SΔABC = ½ · AH · h – ½ · CH · h

Виносимо загальні множники за дужку:

SΔABC = ½ · h · (AH – CH)

Але ж якщо з відрізка AH відняти відрізок CH, то вийде відрізок AC, довжина якого дорівнює a. Отже, ми можемо записати, що і в цьому випадку площа трикутника дорівнює також ½ ah.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр треугольника CBA равен 1200 см. Вычисли стороны треугольника, если дано их соотношение AC:BA:BC=5:4:3.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Shteinbakh
batalerka391
Melsan19914239
Yelena Kotova
Natakarpova75732
denchiklo2299667
Yuliya_Viktoriya316
katya860531
extremhunter
ksuhova
озерская_Мария1234
С5 и 6 номерами. заранее при много ​
jaksonj326
Sergeevich-Novikov
almazsit85
gbg231940