Объяснение:
Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2], т.е. как часть плоскости, ограниченную тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В {\displaystyle n}n-мерной геометрии аналогом треугольника является {\displaystyle n}n-й мерный симплекс.
Иногда рассматривают вырожденный треугольник, три вершины которого лежат на одной прямой. Если не оговорено иное, треугольник в данной статье предполагается невырожденным.
Пусть треугольник ABC, в котором AB=AC, разделен отрезком BD на два равнобедренных треугольника ABD и BCD. Рассмотрим два случая:
Первый случай: стороны AD, BD и BC равны между собой.
Обозначим через x величину угла A треугольника ABC. Для составления уравнения воспользуемся свойством углов равнобедренного треугольника и теоремой о внешнем угле треугольника. Имеем:
Поскольку AB=AC, то \angle CBD= x. Выражая через x сумму углов треугольника ABC, приходим к уравнению 5x=180 в степени circ, откуда получаем, что x=36 в степени circ.
Второй случай: стороны AD, BD и BC, CD попарно равны между собой.
Приведя аналогичные рассуждения, что и в первом пункте, получим уравнение 7x=180 в степени circ, откуда x= дробь, числитель — 180 в степени circ, знаменатель — 7 .
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
a) AB – диаметр окружности с центром O. Найдите координаты точки O, если A (4; 3) и B (–2; –1b) Запишите уравнение этой окружности.
Объяснение:
а)Найдите координаты точки О :
О (1;1)
b)Уравнение этой окружности :
R =