Сумма углов четырехугольника =360°
В четырехугольнике ОКЕС углы ЕКО=ЕСО=90° ( свойство радиуса, проведенного в точку касания)
Угол КЕС=360°-2•90°-120°=60°
По свойству отрезков касательных из одной точки КЕ=СЕ.
∆ КЕС - равнобедренный, его углы при КС равны (180°-60°):2=60° -
∆ КЕС равносторонний.
∆ КОС - равнобедренный ( стороны - радиусы).
Углы при КС=90°- 60°=30°
КЕ=СЕ, КО=СО, ЕО - общая. ∆ ЕКО=∆ ЕСО.
ЕО - биссектриса угла КЕС.
Угол ОЕС =30°
∆ ОЕС - прямоугольный.
Радиус ОС ( катет) противолежит углу 30°. ⇒
ОЕ=2•OC=12 см (свойство угла 30°).
КА=СА, ЕА медиана и высота ∆ КЕС,⇒ ЕО ⊥ АС.
В прямоугольном Δ АОС угол ОСА=30°⇒
ОА=ОС•sin30°=6•0,5=3 см
Поделитесь своими знаниями, ответьте на вопрос:
Дано куб ABCDA1B1C1D1. Обчисліть кут між векторами BC1 І BK , де K- середина ребра DD1
1) Треугольник MNC, образовавшийся после проведения плоскости, параллельной АВ, подобен треугольнику АВС по признаку о равенстве 3-х углов одного треугольника трём углам другого треугольника:
∠А = ∠NMC - как углы соответственные при параллельных АВ и NM и секущей АС;
∠В = ∠СNM - как углы соответственные при параллельных АВ и NM и секущей ВС;
∠С у обоих треугольников общий.
2) Если принять АМ = 3х, то тогда МС = 7х, а сторона АС большого треугольника АВС равна:
АС = 3х + 7х = 10 х.
3) Из подобия треугольников следует, что отношения стороны, лежащих против равных углов равны.
Следовательно:
NC : BC = МС : АС,
но т.к. МС : АС = 7х : 10х = 7 : 10,
то и отношение NC : BC = 7 : 10.
Ответ: NC : BC = 7 : 10.