Людмила Анна
?>

Найдите длину отрезка AB если известно из координаты точек A (1;2) и B (-1;1)

Геометрия

Ответы

echervyakov

Выражение под корнем

АВ =|/(1+1)^2+(2-1)^2 =|/(4+1)=|/5

ответ : |/5 (корень из пяти)

Самохвалова-Геннадьевна
Все стороны правильного (равностороннего) треугольника АВС = а .
Его высота ВН есть медиана, её можно найти из прямоугольного треугольника АВН :
  h=√(a²-a²/4)=√(3a²/4)=(a√3)/2
Центры вписанной и описанной окружностей у правильного Δ совпадают
и лежат на пересечении серединных перпендикуляров (они же высоты, биссектрисы и медианы). Медианы в точке пересечения делятся в отношении 2:1 , считая от вершины. И 2 части приходится на радиус описанной окружности, а 1 часть приходится на радиус вписанной окружности. Нас интересует  R=2/3·h=2/3·(a√3)/2=a√3/3 .
Формула площади правильного треугольника:
  S=1/2·a·a·sin60°=a²/2·√3/2=a²√3/4  .
По условию  S=75√3   ⇒  a²√3/4=75√3  ⇒  a²=75·4=300  ⇒  a=10√3 .
R=a√3/3=10√3·√3/3=10 .
jurys71242
Обозначим центр данной вневписанной окружности точкой О. Проведём радиусы в точки касания (в точки B' и A').
Рассмотрим ΔOB'A'.
OB' = OA' = R ⇒  ΔOB'A' - равнобедренный и тогда ∠OB'A' = ∠OA'B'.\
Т.к. радиус, проведённый в точку касания, перпендикулярен касательной, то ∠CB'O = CA'O.
∠CB'A' = 90° - ∠OB'A' и ∠CA'B' = 90° - ∠OA'B'.
Тогда ∠CA'B' = ∠CB'A' ⇒ ΔCB'A' - равнобедренный и CB' = CA'.
(можно сразу сказать, что CB' = CA' - как отрезки касательных, проведённые из одной точки).
Теперь осталось доказать, что CB' = p (или CA' = p), где p - полупериметр.
B'A = AC', C'B = BA' - как отрезки касательных, проведённые из одной точки.
Тогда AC = CB' - AC'
CB = A'C - BC' 
p = 0,5(AC + CB + AC' + C'B) \\ p = 0,5(CB' - AC' + A'C - BC' + AC' + CB') \\ p = 0,5 \cdot(A'C+ CB') \\ p = 0,5 \cdot 2A'C \\ p = A'C

Даны треугольник abc и окружность, касающаяся стороны ab в точке c' и продолжений сторон ac и bc соо

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите длину отрезка AB если известно из координаты точек A (1;2) и B (-1;1)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

oskar-pn
silviya
espectr-m
faberlic0168
Obukhov-Buriko
АркадьевичБундин789
У трикутнику АВС АВ, ВС, АС - це.
Мария591
bristolhouse20151001
Salnikov1730
kirycha-2000719
filimon131262
polina3mag
Vrezh
Vladimirovich351
akustov55