cimora-kativ
?>

Площа основи трикутної прямої призми дорівнює 6см^2, а площі бічних граней - 12см^2, 16см^2 і 20см^2. Знайдіть площу повної поверхні призми.

Геометрия

Ответы

Григорьевич915

S полн. пов=60 см^2

Объяснение:

Sполн. пов=S бок. пов+2S осн

Sполн. пов=(12+16+20)+2×6=60

gre4ka2004

Відповідь:

Окружность (О; r)

∠OBA = 30°

CA — касательная

Найти:

∠BAC — ?

1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).

У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.

2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.

3) ∠BAC = ∠OAC - ∠OAB.

∠BAC = 90° - 30° = 60°.

ОТВЕТ: 60°

Быстрое решение (пояснения писать обязательно нужно):

1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.

По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:

2) ∠BAC = 90° - 30° = 60°

ОТВЕТ: 60°

Пояснення:

Смотри картинку

pryvalovo48
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.

Дано: ∠А = ∠А₁; АВ : А₁В₁  =  АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁  =  АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площа основи трикутної прямої призми дорівнює 6см^2, а площі бічних граней - 12см^2, 16см^2 і 20см^2. Знайдіть площу повної поверхні призми.
Ваше имя (никнейм)*
Email*
Комментарий*