(см. объяснение)
Объяснение:

Сразу замечу, что задача составлена неграмотно. Высота измеряется в сантиметрах, а не сантиметрах квадратных, поэтому правильного ответа здесь заведомо нет! Если пренебречь этой существенной неточностью, видим, что в последнем варианте не сокращена дробь, хотя
.
Комментарий:
Задачу можно было решить, не зная формулы Герона (хотя она есть в школьной программе).
Покажем, что достаточно уметь применять теорему Пифагора:

Решая систему, получаем, что
.
Однако такой подход, как мне кажется, менее оптимален.
Задание выполнено!
ΔАВС , АВ=ВС , ∠АСВ=75° , точка Х∈ВС , т. Y∈ВС , т. Х∈ВY ,
АХ=ВХ=2 см , ∠ВАХ=∠YАХ . Найти AY .
Так как ΔАВС - равнобедренный и АВ=ВС, то ∠ВАС=∠АСВ=75° ⇒
∠АВС=180°°-75°-75=30°
Так как АХ=ВХ=2 см , то ΔАВХ - равнобедренный и ∠ВАХ=∠АВХ , но ∠АВХ=∠АВС=30° , поэтому ∠ВАХ=30° и ∠АХВ=180°-30°-30°=120° .
Тогда внешний угол ∠AXY=180°-120°=60° .
По условию ∠YAX=∠ВАХ=30° . Тогда в ΔAXY угол ∠AYX=180°-30°-60°=90° , то есть ΔAXY - прямоугольный , в котором гипотенуза АХ=2 см , а катет XY , лежащий против угла в 30°, равен половине гипотенузы, то есть XY=1 cм .
По теореме Пифагора AY²+XY²=AX² ⇒ AY²=AX²-XY²=2²-1²=4-1=3 ,
AY=√3 cм .
Объяснение:
Отметь как лучший
Поделитесь своими знаниями, ответьте на вопрос:
решим по формуле герона, хотя зачем, если векторное произведение проще взять.
итак, жирным обозначены вектора.
mn = (6; 8; 0) a = imni = 10;
mt = (6; 0; 2) b = imti = 2*√10 (уже весело)
tn = (0; -8; 2) c = itni = 2*√17 (еще веселее, может, зря я в это ввязался? )
(хотя есть же excel, который мигом сообщил мне ответ s^2 = 676; s = 26;
да и половина векторного произведения mnxmt/2 = (8; - 9; - 24) имеет модуль 26 : )) ну раз так, главное - не спутать корни :
итак, полупериметр
p = 5 + √10 + √17;
p - a = - 5 + √10 + √17;
p - b = 5 - √10 + √17;
p - c = 5 + √10 - √17;
перемножаем, получим s^2.. в таком порядке p(p-c)(p-b)(p-a);
(5 + √10 + √17)*(5 + √10 - √17)*(5 - √10 + √17)*(√17 - 5 + √10) =
((5 + √10)^2 - 17)*(17 - (5 - √10)^2) =
= 17*(5 + √10)^2 - 17^2 - (5 + √10)^2*(5 - √10)^2 + 17*(5 - √10)^2 =
= 17*(25 + 10)*2 - 17^2 - 15^2 = 676;
.
s = √676 = 26