novocherkutino7
?>

1. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 2 см, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

Геометрия

Ответы

Kashirina

(5+2)*2+2*2 = 18

Объяснение:

grishin
раз площади ∆ADC и ∆CDB относятся как 1 :3, то 
отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота)
AD/DB = 1/3
∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных)
<A = <DCB (сходственные углы подобных треугольников)
обозначим СВ как х
тогда
tgA = CD/AD = x/1
tgDCB = DB/CD = 3/x
раз углы равны, то
tgA = tgDCB
x/1 = 3/x
x^2 = 3
x = √3
tgA = x/1 = √3

<A = arctg(tgA) = 60 ° 
<B = 180 - 90 - <A = 30°
ну а <C у нас прямой по условию
shakhnina90
раз площади ∆ADC и ∆CDB относятся как 1 :3, то 
отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота)
AD/DB = 1/3
∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных)
<A = <DCB (сходственные углы подобных треугольников)
обозначим СВ как х
тогда
tgA = CD/AD = x/1
tgDCB = DB/CD = 3/x
раз углы равны, то
tgA = tgDCB
x/1 = 3/x
x^2 = 3
x = √3
tgA = x/1 = √3

<A = arctg(tgA) = 60 ° 
<B = 180 - 90 - <A = 30°
ну а <C у нас прямой по условию

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 2 см, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*