ответ: 21 (ед. длины)
Объяснение: Поскольку стороны вписанного прямоугольника параллельны диагоналям квадрата, диагональ ВD квадрата делит периметр прямоугольника на две равные половины ТКМЕ и ТРНЕ. Как известно, диагонали квадрата делят его углы пополам. При этом угловые треугольники МВН и КDР – равные прямоугольные равнобедренные, в которых ВЕ=ЕМ=ЕН и TD=ТК=РТ. Заметим, что МК+МЕ+ТК=DВ=10,5 - это длина половины периметра прямоугольника. Полный периметр прямоугольника КМНР=2•10,5=21 ( ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
Катеты прямоугольного треугольника равны 9 см и 12 см. Вычисли: - радиус описанной окружности; - радиус вписанной окружности. R= см; r= см.
Сделаем рисунок.
Треугольники ВМК, АКТ, МСН и НDT - равнобедренные прямоугольные.
ОА=АС:2=15 см
Пусть ВК=х
Тогда АК=АВ-х
По известному свойству гипотенузы равнобедренного прямоугольного треугольника
АВ=15√2
АК=15√2 -х
КМ=х√2
КТ=(15√2 -х )*√2=30-х√2
По условию КТ-КМ=6 см
30-х√2 -х√2=6
24=2х√2
х=24:2√2=12:√2
Умножим числитель и знаменатель на √2, чтобы избавиться от дроби:
х=12:√2=(12*√2):√2*√2х=6√2
КМ=6√2*√2=12 см
КТ=30-х√2=30-12=18 см
КТ-КМ=18-12=6 см