Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².
Поделитесь своими знаниями, ответьте на вопрос:
. Катет прямоугольного треугольника равен 8 см, а его проекция на гипотенузу равна 4 см. Найдите площадь треугольника.
80 см^2
Объяснение:
Рассмотрим треугольник , лежащий в основании.АВ=ВС=10 и АС=12
BD -биссектриса угла В. Так как треугольник равнобедренный, то
BD^2= AB^2 - (AC/2)^2 = 100-36=64
BD=8
О-точка пересечения биссетрис . Тогда по свойству биссектрисы:
ВО:ОD= AB:AD=10:6 =5:3
Значит ВО=5 см OD=3 см
Пусть вершина пирамиды S
Тогда SB^2= BO^2+OS^2= 25+16=41
SB=sqr(41)
Теперь найдем АО^2=ОС^2= AD^2+OD^2= 36+9=45
SA^2=SC^2= AO^2+OS^2= 45+16=61
SA=sqr(61)
Найдем площадь треугольника ACS :
Высота этого треугольника SD= sqr (SA^2-AD^2)=sqr(61-36)=5
Sasc=AC*SD/2=12*5/2=30
Найдем площадь треугольника ACB : AF и BF- отрезки , на которые высота делит сторону АВ. AF=6 , BF=4
Высота этого треугольника = sqr (SA^2-AF^2)=sqr(61-36)=5
Sasb=AB*SF/2=10*5/2=25
Заметим, что треугольники ASB = CSB=25
Тогда полная площадь боковой поверхности:
25+25+30=80