Дан равнобедренный треугольник ABC, где СA = CB , А(1; -2; 1), В(3; 2; -3), точка С лежит на оси ординат. Найти стороны треугольника ABC .
ответ: |AB| = 6 ; |CA| = |CB| =3√2 ;
Объяснение: C ∈ Oy ⇒ C(0 ; y; 0)
|AB| =√ ( (3 -1)² + (2 -(-2) ) ²+( -3 -1)² ) =√ ( 4 + 16+16 ) = 6 ;
CA² = (1 - 0)²+( -2 -y)² + (1 - 0)² = 1 +( 2 +y)² + 1 = y²+4y+6
CB² = (3 - 0)²+( 2 -y)² + (-3 - 0)² =y² -4y+22 , но CA² = CB² ⇒
y²+4y+6 = y² - 4y+22 ⇔ 8y = 16 ⇒ y = 2
C(0 ; 2; 0)
|CA| =|√ ( y²+4y+6 ) =√ ( 2²+4*2*+6 ) = 3√2
* * * |CB| = √ ( y²-4y+22 ) = √ ( 2²-4*2+22 ) = 3√2 * * *
324√3 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=24√3 . Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=12√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=6√3 .
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=432-108=324; РН=18.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=12√3 .
S(КМРТ)=(МР+КТ)/2 * РН = (12√3+24√3)/2 * 18=(18√3)*18=324√3 ед²
Поделитесь своими знаниями, ответьте на вопрос:
Helpочень нужнобуду очень благодарна за ответ и
3. 1) угол О= 180 - 50=130
2)угол А= (180 - 30):2=75
3)угол B= (180-120):2=30
4)угол О= 180 - 80=100
5)угол В= углу А
6)угол О= 180-100=80
7)угол А= (180-90):2=45
Объяснение:
1, 4, 6) треугольник АОВ равнобедренный, так-как радиусы круга равны, а у равнобедренного треугольника боковые стороны равны. Сумма углов треугольника равна 180 градусов, углы при основе равнобедренного треугольника равны между собой угол О равен сума углов треугольника(180 градусов) минус один из углов при основе и результат поделить на 2