Построение на рисунке в приложении.
Объяснение:
B1D -диагональ призмы. Точка Р - точка, лежащая на боковом ребре АА1 призмы, скрещивающимся с диагональю В1D.
Точки Р и В1 лежат в одной боковой грани. Соединяем их прямой РВ1. Точки Р и D лежат в одной боковой грани. Соединяем их прямой РD. Две параллельные грани пересекаются плоскостью сечения по параллельным прямым. Из точки D проводим луч, параллельный прямой РВ1 до пересечения с боковым ребром СС1 => получаем точку К на этом ребре (также скрещивающимся с диагональю B1D).
Соединив точки К и В1 получаем линию пересечения плоскости сечения с гранью ВВ1С1С (эта прямая будет параллельна прямой PD на грани AA1D1D). Четырехугольник (параллелограмм) PB1KD и будет искомым сечением.
Поделитесь своими знаниями, ответьте на вопрос:
на сегодня НУЖНО ОТ 1) Побудуйте трикутник АВС за такими даними: АВ=6см; ВС=10 см; АС=8см 2) дАНО ТРИКУТНИК . пОБУДУЙТЕ ВСІ ЙОГО медіани, бісектриси, висоти якщо даний трикутник гострокутній, висоти якщо даний тупокутний трикутник 3) Побудуйте: а) відрізок, який дорівнює відстані між двома паралельними прямими; б) дотичну, що проходить через дану точку 4) Дано гострі кути альфа і бета причому альфа менша за бету. Побудуйте кут із градусною мірою: А) 0, 5бета Б) альфа+бет В) 2бета-альфа
Грани правильного тетраэдра - равносторонние треугольники.
Их биссектриса является и высотой и медианой.
В сечении образуется равнобедренный треугольник, одна сторона которого равна ребру тетраэдра, две других - высоты грани.
Высота грани h = a*cos 30° = a√3/2 = 5√3/2.
Площадь сечения можно определить или 1) по формуле Герона, или 2) через высоту сечения.
1) Полупериметр p = 6,83013. Площадь S = √(p(p-a)(p-b)(p-c).
Поставив данные, получаем:
S = √( 6,83013*1,830123*2,5*2,5) = √78,125 = 8,83883.
2) Высота сечения из середины ребра на противоположное ребро равна:
h(c) = √(h² - (a/2)²) = √(18,75 - 6,25) = √12,5 ≈ 4,33013.
S = (1/2)*h(c)*a = (1/2)*5*4,330135 = 8,83883.