Кінці відрізка завдовжки 6 см належать двом перпендикулярним площинам.відстані від кінців відрізка до лінії перетину цих площин 3√2см.знайдіть кути утворені відрізком із цими площинами
В треугольнике ABC проведены высота AH и медиана AM, а также средняя линия KL, параллельная стороне BC. Какой из углов больше:
угол KHL или угол KML?
Объяснение:
1) Т.к. К, М середины АВ и ВС , то КМ -средняя линия ΔАВС. По т. о средней линии треугольника КМ║АС⇒КМ║АL.
Т.к. L, М середины АC и ВС , то LМ -средняя линия ΔАВС. По т. о средней линии треугольника LМ║АB⇒LМ║АK.
Значит АLMK- параллелограмм по определению и ∠КМL=∠KAL ,по свойству противоположных углов параллелограмма .
2)Т.к. КL║BC и АН⊥ВС ⇒ КL⊥АН.
Т.к. КL средняя линия , то АО=ОН ⇒ КL- серединный перпендикуляр , каждая точка которого равноудалена от концов отрезка АН. Поэтому КА=КН и LA=LH ⇒
ΔКАН-равнобедренный : ∠КАН=∠КНА ;
ΔLAH -равнобедренный : ∠LAH=∠LHA ;
3) ⇒ ∠КHL=∠KAL ⇒ ∠КHL=∠KML Вот так неожиданно и странно.
Кольцова
27.09.2020
Для решения нужно вспомнить. что: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому h²=9·16=144 h=12 Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты: 1)9²+12²=225 √225=15 2)16²+12²=400 √400=20 Катеты равны 15см и 20 см, гипотенуза 9+16=25 см
Можно применить для решения другую теорему. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Найдем гипотенузу: 9+16=25 см Пусть меньший катет будет х. Тогда его проекция - 9см: х²= 9·25=225 х=15 см Больший катет пусть будет у: у²=25·16=400 у=20 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Кінці відрізка завдовжки 6 см належать двом перпендикулярним площинам.відстані від кінців відрізка до лінії перетину цих площин 3√2см.знайдіть кути утворені відрізком із цими площинами
В треугольнике ABC проведены высота AH и медиана AM, а также средняя линия KL, параллельная стороне BC. Какой из углов больше:
угол KHL или угол KML?
Объяснение:
1) Т.к. К, М середины АВ и ВС , то КМ -средняя линия ΔАВС. По т. о средней линии треугольника КМ║АС⇒КМ║АL.
Т.к. L, М середины АC и ВС , то LМ -средняя линия ΔАВС. По т. о средней линии треугольника LМ║АB⇒LМ║АK.
Значит АLMK- параллелограмм по определению и ∠КМL=∠KAL ,по свойству противоположных углов параллелограмма .
2)Т.к. КL║BC и АН⊥ВС ⇒ КL⊥АН.
Т.к. КL средняя линия , то АО=ОН ⇒ КL- серединный перпендикуляр , каждая точка которого равноудалена от концов отрезка АН. Поэтому КА=КН и LA=LH ⇒
ΔКАН-равнобедренный : ∠КАН=∠КНА ;
ΔLAH -равнобедренный : ∠LAH=∠LHA ;
3) ⇒ ∠КHL=∠KAL ⇒ ∠КHL=∠KML Вот так неожиданно и странно.