Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.
Галстян874
03.01.2023
А) Каждая сторона параллелограмма является параллельным переносом противолежащей стороны. При параллельном переносе отрезка в пространстве, каждая его произвольная точка (x; y; z) переходит в точку с координатами (x + a; y + b; z + c)
Найдем числа a, b, c в случае параллельного переноса отрезка AB в отрезок CD.
Для этого рассмотрим параллельный перенос точки B в точку C: (6 + a; -6 + b; 2 + c) = (10; 0; 4)
Соответственно: a = 10 – 6 = 4; b = 0 – (-6) = 6; c = 4 – 2 = 2
Аналогично рассмотрим параллельный перенос точки A в точку D: (-6 + a; -4 + b; 0 + c) = (-6 + 4; -4 + 6; 0 + 2) = (-2; 2; 2)
ответ: Не всякая фигура имеет центр симметрии.
Объяснение:
Центральная симметрия относительно точки О - это такое преобразование пространства, при котором каждая точка А отображается в точку А' такую, что АО = A'O.
Фигура называется симметричной относительно точки О, если для каждой точки фигуры точка, симметричная ей относительно точки О, так же принадлежит этой фигуре.
Примеры фигур, имеющих центр симметрии:
отрезок, квадрат, круг, параллелограмм, правильный многоугольник с четным количеством сторон.
Примеры фигур, не имеющих центра симметрии:
треугольник, многоугольник с нечетным количеством сторон, трапеция.