ivanovmk1977
?>

5. В треугольник вписана окружность так, что три из шести получившихся отрезков касательных равны 6 см, 7см и 8 см. Найти периметр треугольника.

Геометрия

Ответы

benonika
Площадь трапеции

Площадь трапеции равна произведению полусуммы ее оснований на высоту:

S = ((AD + BC) / 2) · BH,

где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.

Доказательство.

Рассмотрим трапецию ABCD с основаниями AD и BC, высотой BH и площадью S.

Докажем, что S = ((AD + BC) / 2) · BH.
Диагональ BD разделяет трапецию на два треугольника ABD и BCD, поэтому S = SABD + SBCD. Примем отрезки AD и BH за основание и высоту треугольника ABD, а отрезки BC и DH1 за основание и высоту треугольника BCD. Тогда

SABC = AD · BH / 2, SBCD = BC · DH1.

Так как DH1 = BH, то SBCD = BC · BH / 2.
Таким образом,

S = AD · BH / 2 + BC · BH = ((AD + BC) / 2) · BH.

Теорема доказана.

nadezhdasvirina
Площадь трапеции

Площадь трапеции равна произведению полусуммы ее оснований на высоту:

S = ((AD + BC) / 2) · BH,

где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.

Доказательство.

Рассмотрим трапецию ABCD с основаниями AD и BC, высотой BH и площадью S.

Докажем, что S = ((AD + BC) / 2) · BH.
Диагональ BD разделяет трапецию на два треугольника ABD и BCD, поэтому S = SABD + SBCD. Примем отрезки AD и BH за основание и высоту треугольника ABD, а отрезки BC и DH1 за основание и высоту треугольника BCD. Тогда

SABC = AD · BH / 2, SBCD = BC · DH1.

Так как DH1 = BH, то SBCD = BC · BH / 2.
Таким образом,

S = AD · BH / 2 + BC · BH = ((AD + BC) / 2) · BH.

Теорема доказана.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

5. В треугольник вписана окружность так, что три из шести получившихся отрезков касательных равны 6 см, 7см и 8 см. Найти периметр треугольника.
Ваше имя (никнейм)*
Email*
Комментарий*