Поделитесь своими знаниями, ответьте на вопрос:
Найдите основание равнобедренного треугольника, если центр вписанной в него окружности делит высоту, проведенную к основанию, в отношении 12:5, считая от вершины, а боковая сторона равна 60 см.Задачу нужно решить, введя две неизвестные, через формулы площадей.
Аналогично, треугольники APC и BPD совместятся поворотом вокруг точки Р, т.е., ∠MPN между их медианами РМ и РN тоже равен углу между диагоналями четырехугольника. В любом случае, получаем либо ∠MPN=∠MQN, либо ∠MPN+∠MQN=180°, что и означает, что точки PQМN лежат на одной окружности.