1.
Пусть дан ABCD - прямоугольник, SАВСD = 15 см, АВ = 5 см.
Найдём ВС - ?
По формуле для Sпрямоуг = a×b ⇒ Sпрямоуг = AB×BC
BC=Sпрямоуг /AB
ВС=15/5 = 3 см
ответ : ВС = 3 см
2.
Пусть дан параллелограмм ABCD,∠В= 150°, две стороны 12 и 16 см. Найдём SABCD -?
Из вершины В проведём высоту ВН к стороне АД.
∠А = 180° - ∠В = 180° - 150° = 30°.
Рассмотрим △АВН : ВН является высотой и катетом и находится против ∠30°.
АВ-гипотенуза , значит ВН = АВ : 2 = 12 : 2 = 6 см.
SABCD = ВН × АД = 6 × 16 = 96 см².
ответ : SABCD = 96 см²
3.
Пусть дан ромб АВСD , АС- диагональ , ∠АСD = 35° .Найдём ∠АВС - ?
АС - биссектриса, ∠АСD = ∠ВАС = 35°, как накрестлежащие.
Рассмотрим △АВС : равобедренный, т.к у ромба все стороны равны, значит углы при основании равны.
∠АВС=180° - 35° - 35° = 110°
ответ : 110°
4.
Пусть дан △АВС-равнобедренный , АС-основание = 12 см.
АВ=ВС=10 см. Найдём S△АВС-?
Рассмотрим △АВС : Проведем высоту ВН , △АВС-равнобедренный ⇒ ВН является высотой , медианой и биссектрисой. Образован прямоугольный треугольник АВН, АН = НС = 12/2 = 6 см.
По теореме Пифагора найдём катет ВН :
ВН=√АВ² - АН²
ВН=√64
ВН=8 см
S△АВС=(ВН×АС)/2
S=(8×12)/2
S=48 кв. см
ответ:48 кв.см.
6.
2,4
Поделитесь своими знаниями, ответьте на вопрос:
Найдите все пары равных треугольников и докажите их равенство по рисункам 2, 3, 22, 23 из прилагаемого документа
Из вершины А проводишь биссектрису, до пересечения со стороной ВС.
Биссектриса делит угол пополам.
Если угол между биссектрисой и основанием АС - 34°, то угол при основании = 34*2 = 68°
Углы при основании равнобедренного треугольника равны, второй угол при основании тоже равна 68°.
Сумма углов треугольника равна 180°, значит угол при вершине В равен
180 - (68 + 68) = 44° .
Медиана в равнобедренном треугольнике, опущенная к основанию, является и биссектрисой.
Поэтому угол между медианой, проведенной к основанию, и боковой стороной будет равен 44:2 = 22°