a) угол В = 38
рассм. ABC: угол A=90, угол B=38 ⇒ угол С=52
рассм. ABH: угол H=90. угол B=38 ⇒ угол A=180-90-38=52
рассм. AHC: угол H=90. угол С=52 ⇒ угол A=38
угол HAM = 52-38 = 14
углы 52, 14 и 38
б) угол B = 20
рассм. ABC: угол A=90, угол B=20 ⇒ угол С=70
рассм. ABH: угол H=90. угол B=20 ⇒ угол A=180-90-38=70
рассм. AHC: угол H=90. угол С=70 ⇒ угол A=20
угол HAM = 70-20 = 50
углы 20, 50 и 70
в) угол HAM = 42
рассм HAM: угол H = 90, угол A=42 ⇒ угол M=48
рассм AMC равнобед. : угол M = 180-48 = 132 ⇒ угол A = C = (180-132)/2 = 24
угол CAH = 42+24=66
угол BAH = 90-66=24
углы 24,42,24
г) угол B = a
рассм. ABC: угол A=90, угол B=a ⇒ угол С=90-a
рассм. ABH: угол H=90. угол B=a ⇒ угол A=90-a
рассм. AHC: угол H=90. угол С=90-a ⇒ угол A=90-(90-a)=a
угол HAM = (90-a)-a=90-2a
углы a. 90-a. 90-2a
Поделитесь своими знаниями, ответьте на вопрос:
Найти угол B в треугольнике BCD если : а) угол С=37 градусам а угол D=55 градусам б)BC параллелен CD и угол D=41 градусам в)BC=CD и угол C=76 градусам г)угол С равен 100 градусов, а внешний угол при вершине D равен 125 градусов
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.