demakova1969
?>

В прямоугольном треугольнике высота, опущенная из вершины прямого угла , является также биссектрисой.Постройте углы треугольника​

Геометрия

Ответы

karavan85450

ответ: 4) 288.

Решение.

Пусть ABC - треугольник, и угол B - ппрямой.

Пусть BК - высота, проведенная из вершины прямого угла B,

BМ - бисектриса, проведенная из угла B, при этом на стороне АС.

BК = 6, ВМ = 8.

точки находятся в таком порядке: A, К, М, C.

Начертите такой треугольник, чтобы было понятнее.

Угол АВМ = угол МВС = 45 гр = pi/4.

Обозначим угол КВМ = alfa.

cos(alfa) = ВК/ВМ = 6/8 = 3/4.

sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .

В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.

АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).

В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.

ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).

Площадь треугольника АВС:

S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).

cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4

cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4

Поэтоиу

S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.

Объяснение:

Avdeeva Yelizaveta
1) Назовем треуг. АBC. Рассмотрим его. Трег. равнобедр. значит его бок.стороны по 13 см. Проведем высоту из вершины В( не из основания, а из верхнего угла треуг.) Высота по св-тву равнобедр. треуг. явл. медианой и биссек. Значит высота ВD поделит основание АС на равные части( 10:2=5). Рассмотрим треуг. АВD. BD- катет, значит найдем его по теореме Пифагора. ( 13-5 возведем в квадрат:
169-25=144. 144 это 12 в квадрате.) BD=12. А дальше просто по формуле найдем площадь. S= 1/2 a•h S= 1/2 10•12=60
ответ:60 см2.
Zelinskaya-Andrei

1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна  h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.

ответ: α = arctg√3 = 60°

2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.

3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.

ответ: искомый угол равен 45°.


1.медианы правильного треугольника авс пересекаются в точке о,ом перпендикулярно (авс) ,ом=√3 ,ав=2√

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В прямоугольном треугольнике высота, опущенная из вершины прямого угла , является также биссектрисой.Постройте углы треугольника​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ИП-Сысоев1628
pechyclava
Apresov
Plyushchik_Nikita
Alesander-Isaev684
TatianaSeliverstova64
ksen1280
Валентина980
Kuznetsova1639
Kharkina1328
mihalewanadia20176987
dmitzu8594
afomin63
Aleksandr
aetolstih