Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
А(0; 0; 0), В(0; 70; 0), С(70; 70; 0). Уравнение АВС: z = 0.
M(35; 0; 0), N(0; 5; 0), K(0; 0; 14).
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть висоту рівнобедреного трикутника, якщо його бічна сторона дорівнює 5 см, а косинус кута при вершині дорівнює −7/25 .
Из точки А, не лежащей на окружности, проведены к окружности касательная и секущая. Расстояние от А до точки касания 12 см. Расстояние от A до одной из точек пересечения секущей с окружностью 24 см. Найдите радиус окружности, если секущая удалена от центра на 12 см.
В сантиметрах
По теореме о касательной и секущей
AT^2 =AN*AM => 12^2 =24*AM => AM =144/24 =6
MN =AN-AM =24-6 =18
Расстояние от точки до прямой - длина перпендикуляра.
OH⊥AN, OH=12
Перпендикуляр из центра к хорде делит ее пополам.
MH =MN/2 =9
По теореме Пифагора
OM =√(OH^2 +MH^2) =15 (см)