mac4roc3781
?>

Вычисление площади плоской фигуры

Геометрия

Ответы

ВладимировичМорозова1941

В треугольнике со сторонами 25 см, 25 см, 14 см найдите расстояние от точки пересечения медиан до вершин треугольника.

ответ или решение 1

Стрелкова Полина

Для решения рассмотрим рисунок

Так как, по условию, АВ = ВС = 25 см, то треугольник АВС равнобедренный, а медиана ВН так же есть высота треугольника.

Медиана ВН делит основание АС пополам, тогда АН = СН = АС / 2 = 14 / 2 = 7 см.

В прямоугольном треугольнике АВН определим длину катета ВН.

ВН2 = АВ2 – АН2 = 625 – 49 = 576.

ВН = 24 см.

Медианы треугольника, в точке их пересечения, делятся в отношении 2 / 1, начиная с вершины.

Тогда ВО = 2 * ОН.

ВН = 24 = ОН + 2 * ОН = 3 * ОН.

ОН = 24 / 3 = 8 см.

ВО = 24 – 8 = 16 см.

В прямоугольном треугольнике АОН, АО2 = ОН2 + АН2 = 64 + 49 = 113.

АО = СО = √113 см.

ответ: Расстояние от точки пересечения медиан до вершин треугольника равно 8 см и √113 см.

Jannadon77

Ре­ше­ние.

а) Пусть се­че­ние пе­ре­се­ка­ет плос­кость верх­не­го ос­но­ва­ния по от­рез­ку MN Так как ос­но­ва­ния па­рал­лель­ны, то пря­мая  при этом М — се­ре­ди­на  зна­чит, MN — сред­няя линия тре­уголь­ни­ка  сле­до­ва­тель­но, N — се­ре­ди­на 

б) По­стро­им се­че­ние. Пусть Q и R — точки пе­ре­се­че­ния се­че­ния с пря­мы­ми  и  со­от­вет­ствен­но. Тогда они лежат на пря­мой MN. Пусть те­перь L и P — точки пе­ре­се­че­ния пря­мых AQ и CR (то есть се­че­ния) с реб­ра­ми  и  со­от­вет­ствен­но. Таким об­ра­зом, се­че­ние — ше­сти­уголь­ник ALMNPC по­лу­ча­е­мый из пря­мо­уголь­ни­ка AQRC от­ре­за­ни­ем от него двух рав­ных пря­мо­уголь­ных тре­уголь­ни­ков LMQ и NPR.

Так как ос­но­ва­ния приз­мы пра­виль­ные ше­сти­уголь­ни­ки со сто­ро­ной

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычисление площади плоской фигуры
Ваше имя (никнейм)*
Email*
Комментарий*