Дано: ΔАВС - равнобедренный, АК = КВ = ВМ = МС (т. К и М - середины боковых сорон АВ и СВ соответственно), ВD - медиана.
Доказать: ΔBKD = ΔBMD.
Доказательство: есть два треугольника BKD и BMD, у которых сторона BD - общая. стороны KB и BM - равны, т.к. ΔABC - равнобедренный, а точки K и M - середины сторон АВ и СВ соответственно. Т.к. BD - медиана равнобедренного ΔABC, то ∠KBD = ∠DBM. Следовательно, по первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны), треугольники BKD и BMD равны, т.к. KB = BM, BD - общая сторона, ∠KBD = ∠DBM.
Чтд.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке угол AOB=13 градусов , угол FOE=65 градусов Найдите угол СОЕ
Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
При пересечении двух параллельных прямых секущей сумма внутренних односторонних углов равна 180°.Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.