1. Радиус окружности, описанной около правильного треугольника:
R = a₃√3/3 = 5√3 · √3/3 = 5 см.
Эта же окружность вписана в правильный шестиугольник. Тогда сторона правильного шестиугольника:
a₆ = 2r · tg(180°/6) = 2r · tg30° = 2r · √3/3
r = R = 5 см
a₆ = 2 · 5 · √3/3 = 10√3/3 см
2. R = 2√3 см, r = 3 см
Запишем формулы стороны правильного многоугольника через радиус описанной и вписанной окружности, получаем систему уравнений с двумя неизвестными: а и n.
a = 2R · sin(180°/n) = 4√3 · sin(180°/n) (1)
a = 2r · tg(180°/n) = 6 · tg(180°/n) (2)
Приравниваем правые части:
4√3 · sin(180°/n) = 6 · tg(180°/n), и так как tgα = sinα/cosα, получаем:
2√3 · sin(180°/n) = 3 · sin(180°/n)/cos(180°/n)
Делим на sin(180°/n) обе части уравнения:
2√3 = 3/cos(180°/n)
cos(180°/n) = 3 / (2√3) = 3√3/6 = √3/2, ⇒
180°/n = 30°
n = 180°/30° = 6 - количество сторон многоугольника.
Для правильного шестиугольника сторона равна радиусу описанной окружности: а = R = 2√3 см.
Или подставляем найденное значение в формулу (1) или (2):
a = 6 · tg(180°/n) = 6 · tg(180°/6) = 6 · tg30° = 6/√3 = 2√3 cм
Поделитесь своими знаниями, ответьте на вопрос:
В четырехугольник ABCD вписанна окружность. Найти периметр ABCD если AB=6см.BC=8 см.CD:AD=3:4
28
Объяснение:
У четырехугольника, описанного около окружности суммы противоположных сторон равны. Получается, что АВ + СД=ВС + АД. Предположим что сторона АД=6, а СД=8, тогда:
АВ + СД=6+8=14 и ВС + АД=8+6=14 , то есть они равны.
Тогда периметр равен 8+8+6+6=28.