polina25258
?>

Найти угол между векторами АВ и CD, если А (1;0;2), B (1; ;3), C (-1;0;3), D (-1;-1;3)​

Геометрия

Ответы

tagirova1
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу.
h=sqrt 2*8= 4
Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20
sqrt-корень
с-гипотенуза
2) Тангенс по определению отношение катетов.
Там дробь, но она сокращена.
По теореме Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
Чтобы получилось 51^2
8 и 15 - мало
16 и 25 - мало
24 и 45 - как раз.
24^2+45^2=51^2
576+2025=2601
ответ: 24 и 45
Решите хотя-бы одну , . 1) перпендикуляр, проведённый из вершины прямоугольника к его диагонали, дел
Оздоевский
1. Объем шара V=4/3π*r³. Объем конуса V=1/3SH.
Так как угол при образующей конуса равен 60°, то его образующие вместе с диаметром основания составляют равносторонний треугольник. И раз так, по теореме Пифигора, квадрат радиуса основания конуса равен разности квадратов его диаметра (этому значению равна длинна его образующей) и высоты:
r^2= 4r^2-H^2 \\ H^2=3r^2 \\ H=r \sqrt{3}\\ r=\frac{H}{\sqrt{3}}
Площадь основания конуса будет π*r². Следовательно, объем конуса будет:
\frac{1}{3} \pi (\frac{H}{ \sqrt{3} })^2*H= \frac{1}{9} \pi H^3
Так как диаметр шара равен высоте конуса, объем шара можно представить как:
V= \frac{4}{3} \pi (\frac{H}{2}) ^3= \frac{1}{6} \pi H^3.
Найдем теперь отношение объемов конуса и шара:
\frac{\frac{1}{9} \pi H^3}{\frac{1}{6} \pi H^3} = \frac{6}{9}= \frac{2}{3}
Следовательно, объем данного конуса составляет 2/3 объема данного шара.
2. Радиус описанной вокруг цилиндра сферы вычисляется по формуле:
R= \sqrt{1/4H^2+r^2}
 Объем цилиндра равен площади его основания, умноженной на высоту. Отсюда высота цилиндра Н=96/48=2 см. Площадь основания равна π*r², отсюда:
r= \sqrt{ \frac{48}{ \pi } }=4 \sqrt{ \frac{3}{ \pi } }.
Площадь сферы равна 4π*R². Подставляем в эту формулу уже найденные значения:
S=4 \pi R^2=4 \pi ( \frac{1}{4}H^2+r^2)= 4 \pi ( \frac{1}{4}*2^2+ \frac{48}{ \pi } )=4 \pi (1+ \frac{48}{ \pi } )= \\ =4 \pi +192
Площадь сферы будет равняться (192+4π) см².

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти угол между векторами АВ и CD, если А (1;0;2), B (1; ;3), C (-1;0;3), D (-1;-1;3)​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Оксана170
ЧумичеваГеннадьевна1827
platonovkosty
dbakun
Vera-zero281
Антонович937
Railyan
vasavto1
priemni451
evageniy79
Amelin-Alipova
denisdenisov63
hadzievamareta44
Роман1406
in-1973