дано: паралелограм ABCD построен на векторах а и b как на сторонах. Известно, что модуль вектора а равен 3, модуль вектора b равен 5, модуль векторов а+b равен 7.
найти: величину угла между векторами a и b(в градусах)
Объяснение:
Дано: ABCD- параллелограмм, построен на векторах а и b как на сторонах. Известно, что модуль вектора| а |=3, | b|=5, | а+b|=7.
Найти: величину угла между векторами a и b
Решение
Пусть АВ=а (вектора), ВС=b(вектора). Тогда суммой двух векторов, по правилу треугольника АВ+ВС=АС (вектора). По условию АВ+ВС=а+b(вектора), поэтому
АС= а+b(вектора), а |АС|= |а+b|=7 (вектора).
В ABC вектора ВС=АД .Тогда углом между векторами а и b будет ∠ВАD=180°-∠АВС.
ΔАВС, АВ=3,ВС=5, АС=7.
По т. косинусов :
АС²=АВ²+ВС²-2*АВ*ВС*cosВ,
49=9+25-30*cosВ,
cosВ=-0,5
∠В=120 , а значит ∠ВАD=180°-120°=60°.
Поделитесь своими знаниями, ответьте на вопрос:
Постройте треугольник со сторонами ав 6 см вс 8 см угол авс 50 градусов в получином триугольнике найдите середину
Достроим этот треугольник до прямоугольника, чьи стороны будут находиться на контуре клетки.
Рассмотрим треугольник АDB:
Он прямоугольный, значит, по теореме Пифагора:
АВ²= DB² + AD² = 5² + 9² = 25 + 81 = 106
так как нам нужны суммы Квадратов сторон, значит оставляем
Аналогично рассмотрим треугольник ВЕС, угол Е также прямой,
ВС² = ВЕ² + ЕС² = 4² + 5² = 16 + 25 = 41
Рассмотрим треугольник АFC -> угол F прямой,
АС² = АF² + FC² = 9² + 4² = 81 + 16 = 97
Теперь сложим всё:
АВ² + АС² + ВС² = 106+41+97 = 244, если не ошибаюсь