Так как AD = BD, треугольник ABD - равнобедренный, значит, по определению, углы DAB и DBA равны.
Так как DC = BC, треугольник DBC равнобедренный, значит, по определению, углы CDB и CBD равны.
Так как треугольник АВС по условию равнобедренный, углы DAB и DCB равны.
Углы ADB и CDB в сумме имеют 180°, так как их стороны образуют прямую АС, а угол CDB равен сумме углов DAB и DBA как внешний угол по отношению к треугольнику ABD.
Тогда ∠CDB = 2∠DCB = ∠CBD, и 2∠DCB + 2∠DCB + ∠DCB = 5∠DCB = 180°, откуда ∠DCB = 180:5 = 36°.
∠DAB = ∠DCB = 36°, и, наконец, ∠АВС = ∠CBD + ∠DBA = 2∠DCB + ∠DCB = 3*36 = 108°.
Углы треугольника АВС равны 108°, 36° и 36°
ответ: 108°, 36° и 36°
Поделитесь своими знаниями, ответьте на вопрос:
У трикутнику ABC знайдіть сторону AC, якщо В=30°, С=45°, сторона АВ дорівнює см.А) 2, 5 см; Б) 7 см; В) 3, 5 см; Г) 5 см.
ответ:Г) 5 см
Объяснение:
находим по теореме синусов (В произвольном треугольнике стороны пропорциональны синусам противоположных углов)
АВ/sinC=AC/sinB
AC= (AB*sin30)/sin45=(5√2*0.5)/(√2/2)= 5