Длины всех ребер правильной шестиугольной призмы равны. Вычислителе длину большей диагонали призмы, если известно, что площадь боковой поверхности призмы равна 96 см².
Площадь боковой поверхности правильной шестиугольной призмы находится по формуле:
а - ребро нашей призмы.
Обратим внимание на чертеж. Искомая длина большей диагонали есть длина гипотенузы прямоугольного треугольника АА₁D.
AD = 2 * 4 = 8 (см)
По теореме Пифагора:
с² = a² + b²
AD₁² = AD² + DD₁²
AD₁² = 8² + 4²
AD₁² = 64 + 16
AD₁² = 80
AD₁ = √(16*5) = 4√5 (см)
ответ: 4√5 см
skachmin
01.12.2020
d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли второй катет и гипотенузу прямоугольного треугольника, если катет AK =9 и 3 в корне и угол OAK = 30°
Длины всех ребер правильной шестиугольной призмы равны. Вычислителе длину большей диагонали призмы, если известно, что площадь боковой поверхности призмы равна 96 см².
Площадь боковой поверхности правильной шестиугольной призмы находится по формуле:
а - ребро нашей призмы.
Обратим внимание на чертеж. Искомая длина большей диагонали есть длина гипотенузы прямоугольного треугольника АА₁D.
AD = 2 * 4 = 8 (см)
По теореме Пифагора:
с² = a² + b²
AD₁² = AD² + DD₁²
AD₁² = 8² + 4²
AD₁² = 64 + 16
AD₁² = 80
AD₁ = √(16*5) = 4√5 (см)
ответ: 4√5 см