Объяснение:
Обозначим величину угла ACB через х.
Выразим через х величину угла ВАС.
Согласно условию задачи, величина угол BAC в 2 раза больше, чем величина угла ACB, следовательно, величина угла ВАС составляет 2х.
Рассмотрим треугольник АВС.
В данном треугольнике угол АВС является прямым.
Поскольку сумма углов любого треугольник равна 180°, можем составить следующее уравнение:
х + 2х + 90 = 180.
Решаем полученное уравнение и находим величину угла ACB:
3х + 90 = 180;
3х = 180 - 90;
3х = 90;
х = 90 / 3;
х = 30°.
Находим величину угла ВАС:
2х = 2 * 30 = 60°.
ответ: угол ACB равен 30°, угол BAC равен 60°.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке 57 а изображен конус. Точка s является вершиной конуса, точка О центром его основания. Точка а лежит на окружности основания конуса, а точка B на луче АО, ОВ< АО. Какой из отрезков SB SO или SA - является образующей конуса
В прямоугольный ΔАВС, ∠С=90 вписан круг .Биссектриса ∠А делит катет в отношении CD:DB=3:5. Найдите площадь круга
Решение Площадь круга S= πr² .Радиус вписанной окружности найдем из формулы S=1/2*P*r .
1) Тк " биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника" , то CD:СА=ВD:АВ или 3:СА=5:АВ ⇒ , а это по определению sinB .
2) По основному тригонометрическому тождеству
sin²B+cos²B=1 получаем cosB=√(1- )=
3) cosB= или ⇒ AB=10.
По т Пифагора АС=√(АВ²-ВС²)=√(100-64)=6
4) S=1/2*P*r
1/2*BC*AC=1/2*(AB+BC+AC)*r
1/2*8*6=1/2*24*r ⇒ r=2 ед
S(круга)=π*2²=4π (ед²)