Пусть CH - высота треугольника ABC, а CM - его медиана. Угол B = 90° - 50° = 40°. Следовательно, можем найти угол BCH в треугольнике CHB, Так как CH - высота, то треугольник BCH - прямоугольный. Значит, угол BCH = 90° - 50° = 40°. По свойству медианы прямоугольного треугольника CM = 0,5 AB = AM = MB (так как медиана CM делит гипотенузу пополам). Знаичт, треугольник BCM - равнобедренный. У равнобедренного треугольника углы при основании равны, значит угол MCB = B = 50°. Рассмотрим треугольник MCH. Угол MHC = 90°, так CH - высота. Сумма двух острых углов прямоугольного треугольника 90°, значит угол MCH = 90° - 80° = 10°.
Малыхин Валерьевна621
05.10.2021
По условию треугольник АВС - равнобедренный. Обозначим его равные стороны как 11х, а основание как 10х. Построим в треугольнике АВС высоту ВН. В равнобедренном треугольнике эта высота будет являться также и медианой (АН=СН=5x). Треугольники АВС и А1ВС1 подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого и углы, заключенные между этими сторонами, равны: - А1В : АВ = С1В : СВ = 1/2 (коэффициент подобия k=1/2); - угол В - общий для обоих треугольников. Зная, что отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, запишем: S A1BC1 : S ABC = k² = (1/2)²=1/4, отсюда S ABC = 4*S A1BC1=4*20√6=80√6. Площадь треугольника равна половине произведения его основания на высоту: S ABC = 1/2*АС*ВН 80√6 = 1/2*10х*ВН. Выразим высоту ВН. В прямоугольном треугольнике АНВ по теореме Пифагора можно выразить ее так: BH=√AB²-AH² BH=√(11x)²-(5x)² BH=√96x²=x√16*6=4x√6. Тогда 80√6 = 1/2*10х*ВН=1/2*10х*4x√6 80√6 = 20х²√6 х²=4 х=2 Находим периметр АВС: Р АВС = 11*2+10*2+11*2=64
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основи прямокутної трапеції дорівнюють 3 см і 5 см. Знайдіть площу трапеції, якщо ії більша діагональ є бісектрисою прямого кута трапеції *