R=4см
Sосн=16π см²
Sбок.=16π√2см²
Sпол.=16π+16π√2 см²
Объяснение:
∆SBA- равнобедренный <SBA=<SAB=45°
∆SOA- прямоугольный, равнобедренный.
<SOA=<ASO=45°.
SO=OA=R=4 см
Sосн=πR²=π*4²=16π см² площадь основания конуса.
∆SOA- прямоугольный.
SA- гипотенуза
SO и ОА - катеты.
По теореме Пифагора найдем
SA²=SO²+OA²=4²+4²=16+16=32
SA=√32=4√2 см апофема
l=SA=4√2 см
Sбок=πRl, где l- апофема.
Sбок=π*4*4√2=16π√2 см² площадь боковой поверхности конуса.
Sсеч=SO*BA/2=SO*2*OA/2=SO*OA=4*4= =16 см² площадь осевого сечения.
Sпол=Sосн+Sбок=16π+16π√2 см² площадь полной поверхности конуса.
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.
Поделитесь своими знаниями, ответьте на вопрос:
В равнобедренном APK с основой AK, проведены высоты AE и КМ. Доказать что треугольник АМК=треугольнику КЕА
fdfgxgcgfgfydjdjfy
Объяснение:
uffhghfffggg