2 2 2 2.2 2 22 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 22
Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
ОВ: (АС - ОВ) = 9/16
16·ОВ = 9·(АС - ОВ)
16·ОВ = 9·АС - 9·ОВ
25·ОВ = 9·АС
ОВ = 9·АС/25 = 9·18:25 = 6,48
ответ: ОВ = 6,48см
1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Поделитесь своими знаниями, ответьте на вопрос:
Выбери верное утверждение. В ответе укажи его номер. 1. Вписанный угол, опирающийся на полуокружность, острый. 2. Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный. 3. Если две параллельные прямые пересечены секущей, то сумма накрест лежащих углов равна 180 градусов.
скорее всего 2 но точно не 1