В равнобедренный треугольник АВС , АВ=ВС=15 , АС=24, вписана окружность (О; r). Найдите r.
Объяснение:
1)Пусть ВН ⊥АС. Центр вписанной окружности О лежит в точке пересечения биссектрис. В равнобедренном треугольнике биссектриса совпадает с высотой ⇒поэтому О лежит на высоте ВН.
АН=42 :2=12( т.к. ВН и медиана ) . Будем искать r из ΔКВО.
2) ΔАВН-прямоугольный, по т. Пифагора ВН=√(15²-12²)=9. Тогда отрезок ВО можно выразить так ВО=9-r.
По свойству отрезков касательных АН=АК=12⇒КВ=15-12=3.
3) ΔКВО-прямоугольный , по свойству радиуса , проведенного в точку касания . По т. Пифагора ВО²=ОК²+КВ²
(9-r)²=r²+3² ,81-18r+r²=r²+9 ,18r=72 , r=4 .
Поделитесь своими знаниями, ответьте на вопрос:
Прямая, параллельная стороне AD треугольника ADB, пересекает стороны AB и BD в точках P и T соотвественно Найдите DT если PT =18 AD=27 , TB=6
1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
OH=1/2*6
OH=3
OH-радиус окружности
ответ:R=3
2.28 градусов
3.7