. 1. Расстояния(длины сторон) определяются, по сути по теореме Пифагора. АВ = sqrt((-4+5)^2 + (3+4)^2) = sqrt(1+49)= sqrt(50) AC = sqrt((-1+5)^2 + (1+4)^2) = sqrt(16+25) = sqrt(41) BC = sqrt((-1+4)^2 + (1-3)^2) = sqrt(9 + 4) = sqrt(13) Все стороны РАЗЛИЧНЫ, поэтому треугольник ТОЧНО НЕ РАВНОБЕДРЕННЫЙ.(Нарисуй его и ты в этом убедишься!). 2. С(-1,1) радиус = СВ = sqrt(13), поэтому уравнение искомой окружности (х+1)^2 + (y-1)^2 = 13 3. Конечно НЕТ, даже и решать не стоит, потому что СА > больше радиуса 4. По известной формуле пишем это уравнение А(-5,-4) В(-4,3) у + 4 х +5 = 3 + 4 -4 + 5 то есть у + 4 = -7х -35 у = -7х -39, ну или 7х + у + 39 = 0 Вот и всё
Поделитесь своими знаниями, ответьте на вопрос:
Даны координаты трёх точек А(4:3 В(2:5) и C(8:9)Вычисли медианы AD, BE, CF треугольника ABC.Координаты центра тяжести треугольника.
За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5
расстояние от Д до биссектрисы =5