ekatef45
?>

Построить 3 треугольника: прямоугольный, равнобедренный и тупоугольный. В каждый треугольник ПРАВИЛЬНО впишите окружность. Обозначить центр окружности и радиус окружности ОБЯЗАТЕЛЬНО.

Геометрия

Ответы

gumirovane2294

1. внутренняя

2.на плоскости равноудалённых от одной точки называемой центром окружности.

3.плоская,замкнутая или кривая все точки которой одинаково удалена от центра.

4.отрезок который соединяет две точки на окружности длина такого отрезка равна 2-м радиусам.

5.отрезок, соединяющий  две точки кривой.

6.делит хорду пополам

7.прямая пересекающаяся окружность

8. касательная к окружности перпендикулярна к радиусу проведенная точку касания

9.если она касается всех сторон,а центр внутри окружности.

10. окружность треугольника касающаяся всех его сторон.

11. называется окружность, к которой является одна из сторон треугольника.

12. является точкой середины перпендикуляров к сторонам треугольника.

xalina85

ответ: КС=16см

Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:

(2х)²-х²=24²

4х²-х²=576

3х²=576

х²=192

х=√64×3

х=8√3см; ВС=8√3; АС=8√3×2=16√3см

Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²

(2х)²-х²=(8√3)²

4х²-х²=64×3

3х²=192

х²=192÷3

х²=64

х=√64

х=8; итак: ВК=8см, тогда КС=8×2=16см

КС=16см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Построить 3 треугольника: прямоугольный, равнобедренный и тупоугольный. В каждый треугольник ПРАВИЛЬНО впишите окружность. Обозначить центр окружности и радиус окружности ОБЯЗАТЕЛЬНО.
Ваше имя (никнейм)*
Email*
Комментарий*