б) на оси z найти точку, равноудаленную от точек D и E.
Примем точку на оси Oz М(0; 0; z).
Используем свойство равенства расстояния MD и ME.
(4² + (-2)² + z²) = ((-3)² + 2² + (z-1)²),
16 + 4 + z² = 9 + 4 + z² - 2z + 1,
2z = -6,
z = -6/2 = -3.
ответ: точка М(0; 0; -3).
Александр1991
04.06.2022
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На стороне ac треугольника abc отмечены точки d и e так что ad=ce докажите что если bd=de то ab=bc
Дано: A(2,3-4), B(3,0,1), C(0,2,3), D(4,-2,0), E(-3,2,1)
Найти: a) расстояние от точки A до:
1)координатный плоскостей.
Это расстояние равно соответственной координате точки.
До плоскости xOy = 4,
xOz =3,
yOz = 2.
2)координатных осей Ox = √(3² + (-4)²) = √(9 + 16) = √25 = 5,
Oy = √(2² + (-4)²) = √(4 + 16) = √20 = √5,
Oz = √(2² + 3²) = √(4 + 9) = √13.
3)начала координат:
OA = √(2² + 3² + (-4)²) = √(4 + 9 + 16) = √29.
б) на оси z найти точку, равноудаленную от точек D и E.
Примем точку на оси Oz М(0; 0; z).
Используем свойство равенства расстояния MD и ME.
(4² + (-2)² + z²) = ((-3)² + 2² + (z-1)²),
16 + 4 + z² = 9 + 4 + z² - 2z + 1,
2z = -6,
z = -6/2 = -3.
ответ: точка М(0; 0; -3).