rastockin8410
?>

Вершины квадрата, со стороной 6, находятся на поверхности шара. Расстояние от центра шара до плоскости квадрата равно 4. Найти радиус шара

Геометрия

Ответы

Valentina
Точка середины стороны AB возьмем за N, а точку середины стороны AC возьмем за M. Тогда MN средняя линия треугольника. Если опустить высоту АН, то она будет перпендикуляра BC и MN. Пересечение высоты со средней линией прими за К. Тогда АК = КН поскольку MN средняя линия. На продолжении MN опустим перпендикуляры из точек C и B, а точки пересечения обозначим соответственно      за Z и X. Тогда ZXCB прямоугольник у которого противолежащие стороны равны.Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.
Коваленко

Эти задачи для устного счета. Если заданы апофема и высота, то нам сразу известен радиус вписанной в основание окружности, r^2 = 10^2 - 8^2 = 6^2; r = 6; 

Кроме того, нам известен косинус двугранного уголла между любой гранью и основанием, он равен 6/10 = 3/5;

Высота основания (это равносторонний треугольник) в 3 раза больше, чем r, то есть 18. Боковая сторона равна 18/(корень(3)/2) = 12*корень(3); площадь основания 12*корень(3)*18/2 = 108*корень(3);

Можно теперь честно вычислить боковую поверхность, умножая апофему на сторону основания, потом деля пополам, и результат утроить (грани три);

Но резутьтат получится такой же, как если площадь основания поделить на косинус дувугранного угла между любой гранью и основанием, то есть на 3/5.

Общая площадь будет (1 + 5/3)*108*корень(3) = 288*корень(3);

По моему, 288 не слишком похоже на 468, но это правильный ответ.

 

Хотите, можно и так посчитать. r = 6; значит половина боковой стороны 6*ctg(30) = 6*корень(3); сторона  12*корень(3), периметр 36*корень(3), площадь 6*36*корень(3)/2 = 108*корень(3). Опять тот же результат

Боковая грань - основание 12*корень(3), высота 10, площадь 12**корень(3)*10/2 = 60**корень(3), граней 3, всего 180*корень(3); складываем и опять получаем то же самое Хотите, еще счета расскажу? и все дадут правильный результат, а не тот, который вы хотите получить :

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вершины квадрата, со стороной 6, находятся на поверхности шара. Расстояние от центра шара до плоскости квадрата равно 4. Найти радиус шара
Ваше имя (никнейм)*
Email*
Комментарий*