Olybetezina1973
?>

В Древнем Египте, как это и положено, строили пирамиду-гробницу для фараона Среднего царства. Если наклонить одну из сторон пирамиды так, чтобы она стала перпендикулярна полу, то она будет иметь форму равностороннего треугольника со стороной 125 метров. В этой стене строителям требуется проделать отверстие для возможности пройти внутрь и обустроить усыпальницу. Известно, что полученный проход имеет форму квадрата и вписан в треугольник, высота которого делит сторону квадрата пополам. Найдите приближённую длину стороны квадрата, считая, что корень из 3 равен 1, 73

Геометрия

Ответы

Васильевичь Виктория457

Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:

AC=88*.

Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:

AC/2=88/2= вычислишь сам/а.

Сложного ничего нет.

Назаров588

Для даної задачі треба скористатися властивостями катетів та їх проекцій на гіпотенузу в прямокутному трикутнику.

Перший б

Катет прямокутного трикутника — середнє пропорційне між гіпотенузою c і проекцією цього катета на гіпотенузу:

a^{2} = a_{c}c \Rightarrow a = \sqrt{a_{c}(a_{c}+ b_{c})} = \sqrt{6 \cdot (6 + 24)} = \sqrt{180} = 6\sqrt{5} см

b^{2} = b_{c}c \Rightarrow a = \sqrt{b_{c}(a_{c}+ b_{c})} = \sqrt{24 \cdot (6 + 24)} = \sqrt{720} = 12\sqrt{5} см

Площа S прямокутного трикутника знаходится як півдобуток його катетів:

S = \dfrac{a \cdot b}{2} = \dfrac{6\sqrt{5} \cdot 12\sqrt{5}}{2} = 180 см²

Другий б

Висота h_{c} прямокутного трикутника, що проведена до гіпотенузи c з вершини прямого кута, — середнє пропорційне між проекціями катетів на гіпотенузу:

h^{2}_{c} = a_{c}b_{c} \Rightarrow h_{c} = \sqrt{a_{c}b_{c}} = \sqrt{6 \cdot 24} = \sqrt{144} = 12 см

Площа S будь-якого трикутника знаходиться як півдобуток його сторони на висоту, що проведена до цієї сторони. У нашому випадку — це півдобуток гіпотенузи c і висоти h_{c}, що до неї проведена:

S = \dfrac{1}{2} \cdot c \cdot h_{c} = \dfrac{1}{2} \cdot (6 + 24) \cdot 12 = 30 \cdot 6 = 180 см²

Відповідь: 180 см².


Знайдіть площу прямокутного трикутника , якщо висота проведена до гіпотенузи ,поділяє її на відрізки

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В Древнем Египте, как это и положено, строили пирамиду-гробницу для фараона Среднего царства. Если наклонить одну из сторон пирамиды так, чтобы она стала перпендикулярна полу, то она будет иметь форму равностороннего треугольника со стороной 125 метров. В этой стене строителям требуется проделать отверстие для возможности пройти внутрь и обустроить усыпальницу. Известно, что полученный проход имеет форму квадрата и вписан в треугольник, высота которого делит сторону квадрата пополам. Найдите приближённую длину стороны квадрата, считая, что корень из 3 равен 1, 73
Ваше имя (никнейм)*
Email*
Комментарий*