Рассмотрим треугольник АСН.
Если СН — высота, то угол СНА = 90 градусов =>
угол НСА = 180 - угол СНА - угол А = 180 - 90 - 60 = 30 градусов.
Из свойств прямоугольного треугольника знаем, что катет, лежащий против угла в 30 градусов, в 2 раза меньше гипотенузы =>
АН = АС/2, значит
АС = 2 ∙ АН = 12 см
Рассмотрим треугольник АСВ.
Если угол С = 90, а угол А = 60, то угол В = 30 градусов.
Из свойств прямоугольного треугольника знаем, что катет, лежащий против угла в 30 градусов, в 2 раза меньше гипотенузы =>
АС = АВ/2, значит
АВ = 2 ∙ АС = 24 см
АВ = АН + ВН
ВН = АВ - АН = 24 - 6 = 18 см.
ответ: ВН = 18 см.
Если что, вот как должен выглядеть рисунок:
В прямоугольном треугольнике АВС с гипотенузой АВ и углом А = 60 градусов проведена высота С
Объяснение:
1. а) <KBA=<ADP как смежные к противоположным ( а значит равным) углам параллелограмма. <AKB=<APD=90°, значит △AKB ~ △APD по 2м углам.
б) Пусть <KBA=y, <KAB=x. Тогда <ABC=180-y. (1)
<PAK=2x+<BAD. Из прямоугольного тр-ка △AKB x=90-y. <PAK=2*(90-y)+<BAD=180-2y+<BAD.
<BAD=180-<ABC=180-180+y=y
Тогда <PAK=180-2y+y=180-y (2)
Сравнивая (1) и (2) получается, что <ABC=<PAK.
Площадь параллелограмма можно записать произведением высоты на основание:
S=CD*AP=BC*AK
AK/CD=AP/BC или AK/AB=AP/BC
Значит △KAP ~ △ABC по двум пропорциональным сторонам и углу между ними.
Поделитесь своими знаниями, ответьте на вопрос:
Відомі вершини трикутника А(2; 3), B(1; -4), C(-2; 1. Знайти: - рівняння медіани СК, - рівняння висоти АЕ.
Даны вершины треугольника А(2; 3), B(1; -4), C(-2; 1).
Находим координаты точки К - середины стороны АВ:
К = ((2+1)/2=1,5; (3-4)/2=-0,5) = (1,5; -0,5).
Теперь находим вектор СК:
СК = ((1,5-(-2)=3,5; (-0,5-1=-1,5) = (3,5; -1,5) = ((7/2); (-3/2)).
Уравнение медианы СК:
(х + 2)/(7/2) = (у - 1)/(-3/2) или, сократив на 2:
(х + 2)/7 = (у - 1)/(-3).
Находим вектор ВС = (-2-1=-3; 1-(-4)=5) = (-3; 5).
Уравнение стороны ВС: (х - 1(/(-3) = (у + 4)/5.
5х - 5 = -3у - 12, отсюда у(ВС) = (-5/3)х - (7/3).
к(АЕ) = -1/(к(ВС) = -1/(-5/3) = 3/5.
Уравнение АЕ: у = (3/5)х + в. Подставим координаты точки А: 3 = (3/5)*2 + в, находим в = 3 - (6/5) = 9/5.
Уравнение высоты АЕ: у = (3/5)х + (9/5).