Вписанные углы опирающиеся на диаметр равны по 90°, поэтому ∠ADC=90°=∠CBA.
Треугольник ADC - равнобедренный (DA=DC) и прямоугольный (∠ADC=90°), поэтому углы при его основании равны по 45°. ∠DAC=45°=∠DCA
Треугольник ABC - прямоугольный (∠CBA=90°), так же 2AB=AC. Угол лежащий напротив катета, который вдвое меньше гипотенузы равен 30°, поэтому ∠BCA=30°. Сумма острых углов в прямоугольном треугольнике составляет 90°, поэтому ∠BАС=60°.
∠BAD = ∠BAC+∠DAC = 60°+45° = 105°
∠BCD = ∠BCA+∠DCA = 30°+45° = 75°
ответ: ∠BAD=105°; ∠BСD=75°.
Задача
Дано:
периметр равностороннего треугольника 18 см
периметр равнобедренного треугольника 20 см
Сторона равностороннего треугольника является основанием равнобедренного треугольника
Найти: стороны равнобедренного треугольника
Решение
1) 18:3=6 (см) - сторона равностороннего треугольника;
2) пусть боковые стороны равнобедренного треугольника равны х см, тогда
х +х + 6 = 20
2х=20-6
2х=14
х=7 (см) - боковые стороны равнобедренного треугольника;
ответ: стороны равнобедренного треугольника равны 6 см, 7 см и 7 см.
Поделитесь своими знаниями, ответьте на вопрос:
Из точки А к окружности с центром О проведены касательная АВ и отрезок АО. Точки В и М принадлежат окружности (см. рис. Известно, что AB=21, AM:MO=1:3. Найдите длину радиуса окружности.
21
Объяснение:
в дано видимо нарушена ошибка но есл предположить что при решение через ВО угол В равен 90 градусов то:
1)ва:ам=3:4
2)(21:3)*3=21 - радиус окружности
ответ:21
ну уж прости если не правильно дано 100% не полное я всю жинь 5 мо всему связануму с математикой получал.