ОвсепянСергей88
?>

ABCA1B1C1− прямая призма, основанием которой является прямоугольный треугольник с катетом 4см и гипотенузой 5см. Другой катет равен боковому ребру. Найти высоту призмы.

Геометрия

Ответы

atlantika7
Давай попробуем рассуждать логически, и одновременно рисовать чертёж. На чертеже изображаем равнобокую трапецию, вписанную в неё окружность, и хорду, соединяющую боковые стороны. Тут надо заметить два обстоятельства: 
1. Эта самая хорда (давай ндадим ей имя 西)параллельна основаниям. Именно она равна 8.
2. Хорда 西 соединяет точки касания окружностью боковых сторон.  

Проведём ещё на чертеже среднюю линию трапеции, она пройдёт точно через центр вписанной окружности (не буду подробно объяснять почему, сама обоснуй, если потребуется). Давай назовём её 中.

Итак, следи за руками: важный нюанс: данная по условию хорда 西 параллельна средней линии 中.

Радиус вписанной окружности обозначим банально буквой R.

Рассмотрим прямоугольный треугольник, образованный половиной хорды 西, радиусом окружности, и куском высоты трапеции. Косинус угла между хордой и радиусом окажется, что можно записать как cos(a) = (西/2) / R = 西 / (2R). Хорошо.

Далее заметим (опять следи за руками), что этот же угол образуется между этим же радиусом, и средней линией 中, потому что хорда и средняя линия параллельны друг другу, и пересекаются общим радиусом. 

Замечательно. Выразим теперь длину средней линии через радиус и косинус угла. Получится:
1/2 中 = R / cos(a) = R * 2R / 西
домножим обе стороны уравнения на 2, и получим:
中 = 4R^2 / 西

Отлично. Приближаемся к цели. Теперь выразим площадь трапеции через её высоту и среднюю линию. Тут ещё надо заметить, что высота трапеции равна ровно два радиуса, видишь из чертежа?
S = (2R) * 中 = 2R * 4*R^2 / 西  = 8 * R^3 / 西. .
Подставим цифры:
125 = 8 * R^3 / 8
R^3 = 125
R = кубический корень (125) = 5

Ура! Мы нашли радиус вписанной окружности R, он равен 5.
Отсюда сразу записываем ответ: площадь круга s = пи * R^2 = 25*пи.

Это и есть ответ, как я думаю. Но проверь за мной, что не намухлевал.
Fedorovich_Aleksandrovich685
Дано:
KL=27
KN=24
MN=8
Найти: Р(KMN)=?
Решение
Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN.
По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8
Выразим х*у:
х*у=27*8=216 (1)
Найдём длину биссектрисы KN:
KN²=KL*KM-LN*MN
По условиям задачи KL=27, MN=8, LN=x и KM=y
24²=27у-8х
576=27у-8х (2)

Решим систему уравнений:
{х*у=216
{576=27у-8х 
Выразим значение х из первого уравнения: х=216/у
Подставим его во второе уравнение (метод подстановки):
576=27у-8х
576=27у-8*216/у
576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя)
576*у=27у²-1728
27у²-1728-576у=0
27у²—576у-1728=0
D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24
у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0

у=KM=24,
24х=216
х=LN=9

Р (ΔKMN)=KN+MN+KM=24+8+24=56
ответ: периметр треугольника KMN равен 56. 

Втреугольнике klm длина стороны kl равна 27, длина биссектрисы kn равна 24, а длина отрезка mn равна

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

ABCA1B1C1− прямая призма, основанием которой является прямоугольный треугольник с катетом 4см и гипотенузой 5см. Другой катет равен боковому ребру. Найти высоту призмы.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

asvavdeeva
lulu777
re22no22
stasyan
kav511
Манько_Панферов
sve-lysenko
manager9
ev89036973460
zverevahelen
adminaa
Andrei-Shchukin
olesya-kwas
yusovd291
Valerevna Tuzova