Yevgenevich
?>

Начертите прямоугольник, отличный от квадрата. Постройте образ этого прямоугольника при симметрии относительно прямой, содержащей одну из его диагоналей.

Геометрия

Ответы

Анна1417
Пусть О₁ и O₂ - центры квадратов построенных на BC и AD соответственно, О - точка пересечения диагоналей трапеции, О' - точка пересечения AC и O₁O₂. Докажем, что О' совпадает с О.
1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны.
2) Значит треугольники  O₁CO' и O₂AO' подобны (по двум углам), т.е.
CO'/AO'=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD.
3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O' совпадает с O.
Александрович Алексеевна
Чертеж - во вложении.
а) Докажем, что АВСD - параллелограмм.
1) Рассмотрим Δ АМТ и Δ ВМC. Они подобны по двум углам, т.к. ∠1=∠2 (накрест лежащие при AD||BC и секущей АС), ∠5=∠6 (вертикальные). Следовательно, АМ:МС=АТ:ВС.
Т.к. по условию АМ=МN=NC, то АМ:МС=1:2 ⇒ АТ:ВС=1:2 ⇒ ВС=2АТ.
Аналогично, подобны Δ PNC и Δ AND. Поэтому AD=2PC.
2) Т.к. BM||DP и АС - секущая, то ∠3=∠4=∠5=∠6.
3) Δ АМТ = Δ PNC (по стороне и прилежащим углам: АМ=NC, ∠1=∠2, 
∠3=∠6) ⇒ АТ=РС ⇒ ВС=AD.
Вывод: т.к. по условию ВС||AD и по доказанному BC=AD, то по признаку ABCD - параллелограмм. 
Доказано.
б) Диагональ АС делит параллелограмм ABCD на два треугольника АВС и ADC с равными площадями.
В Δ АВN ВМ - медиана ⇒ S_{BMN}= \frac{1}{2} S_{ABN}=\frac{2}{3} S_{ABC}. 
Аналогично, S_{DMN}= \frac{1}{2} S_{MDC}=\frac{2}{3} S_{ADC}.
S_{BMDN}=S_{BMN}+S_{DMN}=\frac{2}{3} S_{ABC}+\frac{2}{3} S_{ADC}=\frac{2}{3} (S_{ABC}+S_{ADC})=\\ = \frac{2}{3}S_{ABCD}.\\ \\
=\ \textgreater \ \frac{S_{BMDN}}{S_{ABCD}} =\frac{2}{3} .
ответ: \frac{S_{BMDN}}{S_{ABCD}} =\frac{2}{3}
Противоположные стороны ad и bc четырёхугольника abcd параллельны. через вершины b и d проведены пар
Противоположные стороны ad и bc четырёхугольника abcd параллельны. через вершины b и d проведены пар

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Начертите прямоугольник, отличный от квадрата. Постройте образ этого прямоугольника при симметрии относительно прямой, содержащей одну из его диагоналей.
Ваше имя (никнейм)*
Email*
Комментарий*