Находим уравнение параллельной плоскости:
x + y - z + D = 0. Подставим те же параметры:
1 + 1 - 1 + D = 0. отсюда D = 1.
Уравнение параллельной плоскости:
x + y - z + 1 = 0
Представим заданную прямую L1 в параметрическом виде:
x/2=y-3/1=z/-1 = t.
x = 2t,
y = t + 3,
z = -t.
Подставим в уравнение параллельной плоскости:
2t + t + 3 - t + 1 = 0.
4t = -4.
t = -4/4 = -1.
Точка В пересечения прямой L1 и плоскости α имеет следующие координаты:
В(−2, 2, 1)
Теперь имеем 2 точки А и В искомой прямой L2.
Определяем вектор АВ: (-3; 3); 0).
Уравнение L2: (x - 1)/(-3) = (y + 1)/3 = (z - 1)/0.
Так как знаменатель при зет равен нулю, то надо уравнение представить в параметрическом виде:
(x - 1)/(-3) = (y + 1)/3 = (z - 1)/0 = k,
x = -3k + 1,
y = +k - 1,
z= 1.
Поделитесь своими знаниями, ответьте на вопрос:
контрольная работа по геометрии 3 вариант девятый номер можно не решать контрольная работа по геометрии 3 вариант девятый номер можно не решать контрольная работа по геометрии 3 вариант девятый номер можно не решать ">
Следовательно, отрезок ВМ=4.
В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними"
Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае:
CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1.
Тогда SinВ=√(1-121/16²)=√135/16.
Площадь треугольника АВМ
Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135.
ответ: Sabm=√135.