АВСД - прямоугольник, АМ⊥ пл. АВСД ⇒ АМ⊥АВ и АМ⊥АД . МВ=15, МС=24, МД=20 Так как МВ - наклонная, а АМ⊥АВ , то АВ - проекция наклонной МВ на пл. АВСД. Причём, АВ⊥ВС. По теореме о трёх перпендикулярах тогда и наклонная МВ⊥ВС ⇒ ΔМВС - прямоугольный, ∠МВС=90° ⇒ по теореме Пифагора : ВС²=МС²-МВ²=24²-15²= 351 , ВС=√351 . АД=ВС=√351 . Аналогично, можно доказать, что МД⊥СД (СД⊥АД , АД - проекция МД ⇒ МД⊥СД) . ΔМДС - прямоугольный , ∠МДС=90° . СД²=МС²-МД²=24²-20²=176 , СД=√176 . АВ=СД=√176 . ΔАМВ: ∠МАВ=90° , АМ²=МВ²-АВ²=15²-176=225-176=49 . АМ=√49=7 .
ninakucherowa
27.05.2021
Пусть ABC - прямоугольный треугольник с катетами AC и BC, AB - гипотенуза. CD - высота, опущенная на гипотенузу. AD = 5 cм BD = 20 см AB = AD + BD = 25 (cм) по теореме Пифагора: AC² + BC² = AB² AC² + BC² = 25² AC² + BC² = 625
Из прямоугольного треугольника ACD: AD и CD - катеты, AC - гипотенуза. По теореме Пифагора: CD² + AD² = AC² AC² = 5² + CD² AC² = 25 + CD²
Из прямоугольного треугольника BCD: BD и CD - катеты, BC - гипотенуза. По теореме Пифагора: BD² + CD² = BC² BC² = 20² + CD² BC² = 400 + CD²
МВ=15, МС=24, МД=20
Так как МВ - наклонная, а АМ⊥АВ , то АВ - проекция наклонной МВ на пл. АВСД. Причём, АВ⊥ВС. По теореме о трёх перпендикулярах тогда и наклонная МВ⊥ВС ⇒ ΔМВС - прямоугольный, ∠МВС=90° ⇒
по теореме Пифагора : ВС²=МС²-МВ²=24²-15²= 351 , ВС=√351 .
АД=ВС=√351 .
Аналогично, можно доказать, что МД⊥СД
(СД⊥АД , АД - проекция МД ⇒ МД⊥СД) .
ΔМДС - прямоугольный , ∠МДС=90° .
СД²=МС²-МД²=24²-20²=176 , СД=√176 .
АВ=СД=√176 .
ΔАМВ: ∠МАВ=90° , АМ²=МВ²-АВ²=15²-176=225-176=49 .
АМ=√49=7 .