cernovarmechta
?>

подробное решение подробное решение

Геометрия

Ответы

irina-mic

Рассмотрим треугольник BDC - прямоугольный (так как ∠BDC = 90°). ∠BCD = 30°.

tg (BCD)= \frac{BD}{DC} \\\\tg (30)= \frac{BD}{9} \\\\\ \frac{1}{\sqrt{3} } =\frac{BD}{9} \\\\BD\sqrt{3} = 9\\\\BD=\frac{9}{\sqrt{3} }

BD = 9/√3 см.

Рассмотрим треугольник ABD - прямоугольный (так как ∠ADB = 90°).

По теореме Пифагора можем найти гипотенузу АВ -

AD^{2} +BD^{2} =AB^{2} \\\\3^{2} +(\frac{9}{\sqrt{3} })^{2} =AB^{2}\\\\9+\frac{81}{3} =AB^{2}\\\\27+9=AB^{2}\\\\AB^{2} =36\\\\AB = 6

АВ = 6 см.

ответ: 6 см.
utburt
Прямая призма.
Sбок пов.=Росн*Н
Pосн=4*с, с - сторона ромба
диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
прямоугольный треугольник:
катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы
катет b =15 см (30:2) - (1/2) диагонали ромба
гипотенуза с - сторона ромба
по теореме Пифагора: c²=8²+15², c=17 см
бОльшая диагональ призмы =50 см -наклонная.
Большая наклонная имеет бОльшую проекцию, =>
рассмотрим прямоугольный треугольник:
гипотенуза с=50 см - бОльшая диагональ призмы
катет а= 30 см - бОльшая диагональ основания призмы
катет H  - высота призмы, найти.
по теореме Пифагора:
50²=30²+H². H²=1600. H=40 см

Sбок.пов=4*17*40
Sбок.пов=2720 см²
vsnimschikov391
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: \triangle CDE с прямым углом \angle C = 90^{\circ}, EF — биссектриса \angle E, CF = 13, FG — искомый отрезок.
==========
Решение:
Докажем, что \triangle CEF = \triangle EFG.
1) Так как EF — биссектриса, то \angle GEF = \angle CEF (биссектриса EF делит \angle E на два равные угла).
2) \angle C =\angle FGE = 90^{\circ} (это следует из условия: так как \triangle CDE прямоугольный, то и \angle C = 90^{\circ}; так как FG — расстояние от F до DE, то \angle FGE = 90^{\circ}).
3) Так как \angle C =\angle FGE и \angle GEF = \angle CEF, то и третий угол первого треугольника равен третьему углу второго треугольника: \angle GFE = \angle EFC. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
\angle C + \angle CFE + \angle CEF = 180^{\circ} \\ 
\angle FGE + \angle GEF + \angle GFE = 180^{\circ}
Отсюда:
\angle CFE = 180^{\circ} - (\angle C + \angle CEF)\\ 
\angle GFE = 180^{\circ} - (\angle FGE + \angle GEF)
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит \angle CFE = \angle GFE.

3) Сторона EF является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что \triangle CEF = \triangle EFG (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (EF — сторона, а \angle GEF = \angle CEF \,\,\,\, \angle GFE = \angle EFC — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне FG соответствует CF, тогда:
FG = CF = 13
ответ: 13. 
=========
ответ можно проверить, геометрически (линейкой) измерив искомый отрезок FG. Смотрите второй рисунок.

Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р
Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

подробное решение подробное решение
Ваше имя (никнейм)*
Email*
Комментарий*