S ≈ 6.87 cм²
Объяснение:
Правильный пятиугольник со стороной а = 2см состоит из пяти равных треугольников. Треугольники эти равнобедренные с боковой стороной, равной R (радиусу описанной окружности), и с углом α при вершине,
α = 180°: 5 = 72°
Углы при основании такого треугольника равны:
0.5 · 180°· (n - 2)/n = 0,5 · 180° · 3 : 5 = 54°.
По теореме синусов можно найти боковую сторону
R : sin 54° = а : sin 72°
R = а · sin 54° : sin 72° = 2 · 0.809 : 0.951 ≈ 1.7
Площадь пятиугольника
S = 5 · 0.5R² · sin 72° = 2.5 · 1.7² · 0.951 ≈ 6.87(cм²)
Поделитесь своими знаниями, ответьте на вопрос:
У прямокутній трапеції менша бічна сторона дорівнює 8 см, більша основа дорівнює 16 см, а менша – 10 см. Знайдіть синус і косинус гострого кута трапеції.
ответ: sinD=0,8; cosD=0,6
Объяснение: Обозначим вершины трапеции А В С D
Проведём высоту СН к основанию АД. Она делит АД так, что АН=ВС=10см, а высота СН=АВ=8см. Соответственно DH=16-10=6см. Рассмотрим полученный ∆СДН, он прямоугольный, где СН и ДН- катеты, а СД - гипотенуза. Найдём гипотенузу СD по теореме Пифагора: СD²=СН²+СD²=64+36=100;
СD=√100=10см
Итак: СД=10см. Теперь найдём синус и косинус острого угла D.
Синус- это соотношение противолежащего от угла катета к гипотенузе, поэтому:
sinD=CH/CD=8/10=0,8
Косинус- это соотношение прилежащего к углу катета к гипотенузе поэтому:
cosD=HD/CD=6/10=0,6