В параллелограмме ABCD биссектрисы углов A и D пересекаются в точке К,которая принадлежит стороне ВС.Найти площадь параллелограмма,если площадь треугольника AKD = 15 см^2.
Объяснение:
Пусть АВ=DС=а.
По свойству накрест лежащих углов при АD║BC и
-секущей АК ⇒∠DAK=∠AKB ⇒ΔABK равнобедренный и АВ=ВК=а ;
-секущей DК⇒∠АDK=∠СКD ⇒ΔDKС равнобедренный и DС =СК=а.
Значит AD=BC=2a
S(AKD)=0,5*AD*h=0,5*2а*h=a*h
S(ABK)+S(DCK)=0,5*ВК*h+0,5*КС*h=0,5h(BK+KC)=0,5h*2a=a*h ⇒
S(AKD)=S(ABK)+S(DCK)=15 (см²)
S( паралл)=S(AKD)+S(ABK)+S(DCK)=15+15=30 (см²)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите отношение x:y:z из вырожени x/5×1/18÷1/21y÷3=1/9z÷1 3/7×7
1) Поскольку этот четырехугольник вписанный, сумма его противоположных углов равна 180°
Угол D, противолежащий углу В=80, равен 100; угол С, противолежащий углу А=60, равен 120°
------------------
2)Вокруг трапеции можно описать окружность тогда и только тогда, когда ее боковые стороны равны.
Если основание и боковые стороны трапеции равны, то один из треугольников, на которые диагонали делят трапецию, равнобедренный, основанием в нём является диагональ.
Треугольник ВСD равнобедренный, углы ВDС=СВD.
Угол ВСD=180-60=120°
Отсюда угол ВDС= СDВ= (180-60):2=30°.
Углы АВD и АСD равны 120-30=90°
Следовательно, треугольники АВD и ACD - прямоугольные.
Центр описанной вокруг прямоугольного треугольника окружности лежит на середине его гипотенузы.