См. вложение.
1 дано угол и выстоа
2 Обозначим вершину данного угла буквой А. Строишь перпендикуляр к стороне в любом месте. На перпендикуляре откладываешь высоту. Получилась точка О.
3 Через нее, через точку О то есть, строишь еще один перпендикуляр, чтоб получилась линия параллельная боковой стороне. На ее пересечении с основанием находишь точку В.
4 В точке В строишь заданный угол, только в другую сторону и на пересечении линий находишь точку С. Три точки есть, треугольник построен. Можно проверить длину полученной высоты, показанна зелённым.
Поделитесь своими знаниями, ответьте на вопрос:
Коллинеарны ли векторы a (1;−3; 5) и
Если в равнобедренной трапеции провести высоты ВН и СК, то получим НВСК - прямоугольник (ВС║КН, так как основания трапеции параллельны, ВН║СК как перпендикуляры к одной прямой), тогда
ВС = КН и ВН = СК.
ΔАВН = ΔDCK по гипотенузе и катету (АВ = CD, так как трапеция равнобедренная, ВН = СК), тогда
АН = DK = (AD - KH)/2 = (AD - BC)/2.
Площадь трапеции:
Sabcd = (AD + BC)/2 · BH
Воспользуемся этими выводами для решения задач:
а) AH = DK = (17 - 11)/2 = 3 см
ΔАВН прямоугольный с гипотенузой, равной 5 см и катетом 3 см, значит он египетский и
ВН = 4 см.
Sabcd = (17 + 11)/2 · 4 = 28/2 · 4 = 14 · 4 = 56 см²
б) AH = DK = (8 - 2)/2 = 3 см
ΔABH: ∠AHB = 90°, ∠BAH = 60°, ⇒ ∠ABH = 30°.
AB = 2AH = 6 см по свойству катета, лежащего напротив угла в 30°,
по теореме Пифагора:
BH = √(AB² - AH²) = √(36 - 9) = √27 = 3√3 см
Sabcd = (8 + 2)/2 · 3√3 = 15√3 см²