shuramuji
?>

2) каждое из боковых ребер правильной шестиугольной пирамиды, у к о то р о й высота равна стороне основания, перпендикулярно двум сторонам о с н о в а н и я и одному из боковых ребер; 3) одна из боковых граней треугольной пирамиды с равными боковыми ребрами и прямоугольным треугольником в основании перпендикулярна основанию.

Геометрия

Ответы

Zladthesecond577
Есть простое решение, использующее свойство медиан: три медианы треугольника делят его на 6 равновеликих (одинаковой площади, но не равных) треугольников.
Данный нам треугольник АВС Пифагоров (его стороны равны 3,4 и 5 см).
Sabc=6см² и каждый из треугольников имеет площадь, равную 1см².
Тогда искомое расстояние - высота треугольника (одного из шести)  с катетом на гипотенузе AB.  h=2S/АM = 2/(2,5)=0,8 см.

Но для практики решим эту задачу через формулу медианы треугольника, свойство медиан, делящихся точкой пересечения в отношении 2:1, считая от вершины и формулу Герона для площади.
Пусть в треугольнике АВС <С=90° и стороны АС=b=3, ВС=а=4 и АВ=с=5.
Найдем медианы Ма и Мc по формуле:
Ma=(1/2)*√(2b²+2c²-a²).
Ma=(1/2)*√(2*(3²)+2*(5)²-4²)=(1/2)*√(18+50-16)=√52/2.
Mc=(1/2)*√(2*(3²)+2*(4)²-5²)=(1/2)*√(18+32-25)=5/2.
Тогда отрезки медиан:
АО=(2/3)*(√52/2)=2√13/3.
ОМ=(1/3)*(5/2)=5/6.
В треугольнике АОМ имеем (сразу приведя к общему знаменателю):
АМ=5/2 = 15/6.
АО=2√13/3=4√13/6.
ОМ=5/6.
Периметр Р=(20+4√13)/6. Полупериметр р=(10+2√13/6).
Тогда по формуле Герона  Sabc=√[p(p-a)(p-b)(p-c)] имеем:
Sаom=√[(10+2√13)*(10+2√13-15)*(10+2√13-4√13)*10+2√13-5)]/36.  Или:Sаom=√[(10+2√13)*(2√13-5)*(10-2√13)*(2√13+5)]/36.
Мы видим, что у нас под корнем произведение разности квадратов:
Sаom=√[(10²-(2√13)²)*((2√13)²-5²)/36 = √(48*27)/36=36/36 =1.
Итак, мы пришли к началу:
Искомое расстояние (высота ОН, проведенная к основанию АМ треугольника АОМ: ОН=2Sbom/АМ = 2/2,5 = 0,8.
ответ: ОН=0,8см.

P.S. Решение приведено для тех, кто не любит формулу Герона, тем более, когда в полупериметре встречаются корни. Чаще всего (если не всегда) приходим к произведению разности квадратов в подкоренном выражении.

Катеты прямоугольного треугольника = 3 и 4 см.найти расстояние от т. пересечения медиан треугольника
Ананян Иван1281
1)В треугольнике АВС касательные ВА и ВС поделены на две части точками пересечения с окружностью К и М соответственно. Отрезки ВК и ВМ равны по свойству касательных => ВК = 5 =ВМ.
2) Точно также: касательные АВ и АС поделены на две части точками пересечения с окружностью К и L соответственно. Отрезки АК и АL равны по свойству касательных => АК=24=АL
3) то же самое с отрезками МС и LС: они равны. (Их значение неизвестно.
4) АВ +ВС+АС =60;
АК +КВ+ВМ+МС+АL+LС=60
Из 1), 2) и 3) => 24+5+5+МС+24+МС=60;
МС=1 => АВ=29; ВС=6; АС =25

Известны все стороны, можно по формуле:
Sтреугольника= корень(р(р-АВ)(р-ВС)(р-АС),
Где р= (АВ+ВС+АС)/2
У меня получилось 60

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2) каждое из боковых ребер правильной шестиугольной пирамиды, у к о то р о й высота равна стороне основания, перпендикулярно двум сторонам о с н о в а н и я и одному из боковых ребер; 3) одна из боковых граней треугольной пирамиды с равными боковыми ребрами и прямоугольным треугольником в основании перпендикулярна основанию.
Ваше имя (никнейм)*
Email*
Комментарий*