8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
8 см
Объяснение:
Найдём ∠М = 180° - (∠К + ∠Е) = 180° - (90° + 30°) = 180° - 120° = 60°
Так как биссектриса делит угол пополам, то значит ∠ЕМС = ∠СМК = 60° : 2 = 30°
∠Е = ∠ЕМС = 30° - по доказательству и условию. Из этого следует, что ΔЕМС - равнобедренный с бёдрами ЕС и СМ. Значит ЕС = СМ.
Так как ∠СМЕ = 30° , то ∠МСК = 180° - (∠К + ∠СМЕ) = 180° - (90° + 30°) = 180° - 120° = 60°. В прямоугольном треугольнике, катет лежащий против угла 30° равен половине гипотенузы. То есть СМ = 2СК.
ЕК = ЕС + СК = ЕС + СМ : 2 = ЕС + ЕС : 2 = 1,5ЕС. Так как ЕК = 12 см (по условию), то 12 = 1,5ЕС ⇒ ЕС = 12 : 1,5 = 8 см
Так как по вышеприведённому доказательству ЕС = СМ = 8 см
Поделитесь своими знаниями, ответьте на вопрос:
Основание равнобедренного треугольника равно 32 см, а боковая сторона 30 см. Найдите площадь треугольника
∆АВС — равнобедренный (АВ и ВС — боковые стороны, АС — основание).
АВ = ВС = 30 см.
АС = 32 см.
Найти:S(∆АВС) = ?
Решение:Проведём из вершины угла АВС высоту ВН на основание АС.
Так как ВН — высота, проведённая к основанию равнобедренного треугольника, то это ещё биссектриса и медиана (по свойству равнобедренного треугольника).
Тогда —
АН = НС = 32 см*0,5 = 16 см.
Рассмотрим ∆ВНС — прямоугольный.
По теореме Пифагора —
BH²+HC² = BC²
BH² = BC²-HC²
BH² = 30²-16²
BH² = 900-256
BH² = 644
ВН = √644 = 2√161 см.
Площадь треугольника равна половине произведения его стороны и высоты, опущенной на эту сторону.Следовательно —
S(∆ABC) = 0,5*BH*AC
S(∆ABC) = 0,5*2√161 см*32 см
S(∆ABC) = 32√161 см².
ответ:32√161 см².