Площадь треугольника S 6
Периметр треугольника P 12
Угол треугольника α 53.13
Угол треугольника β 36.87
Угол треугольника γ 90
Высота треугольника ha 2.4
Высота треугольника hb 3
Высота треугольника hc 4
Медиана треугольника ma 2.5
Медиана треугольника mb 3.606
Медиана треугольника mc 4.272
Биссектриса треугольника la 2.424
Биссектриса треугольника lb 3.354
Биссектриса треугольника lc 4.216
Радиус вписанной окружности r 1
Радиус описанной окружности R 2.5
Внешний угол треугольника α 306.87
Внешний угол треугольника β 323.13
Внешний угол треугольника γ 270
Средняя линия треугольника mla 2.5
Средняя линия треугольника mlb 2
Средняя линия треугольника mlc 1.5
Поделитесь своими знаниями, ответьте на вопрос:
Участок AB, конечности которого находятся на окружностях у основания цилиндра, находится в 4 точках от оси цилиндра и в два раза больше радиуса цилиндра. Общая площадь поверхности цилиндра: 256pi Найдите длину цилиндра по высоте․
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.